Molecular dynamics computer simulations of solvation dynamics at liquid/liquid interfaces

2001 ◽  
Vol 114 (6) ◽  
pp. 2817-2824 ◽  
Author(s):  
David Michael ◽  
Ilan Benjamin
1996 ◽  
Vol 436 ◽  
Author(s):  
J. N. Glosli ◽  
M. R. Philpott ◽  
J. Belak

AbstractMolecular dynamics computer simulations are used to study the effect of substrate temperature on the microstructure of deposited amorphous hydrogenated carbon (a:CH) films. A transition from dense diamond-like films to porous graphite-like films is observed between substrate temperatures of 400K and 600K for a deposition energy of 20 eV. The dense a:CH film grown at 300K and 20 eV has a hardness (˜50 GPa) about half that of a pure carbon (a:C) film grown under the same conditions.


2002 ◽  
Vol 731 ◽  
Author(s):  
Romulo Ochoa ◽  
Michael Arief ◽  
Joseph H. Simmons

AbstractWe conduct molecular dynamics computer simulations of fracture in silica glass using the van Beest, Kramer, and van Santen model. Stress is applied by uniaxial strain at different pulling rates. Comparisons with previous fracture simulations of silica that used the Soules force function are presented. We find that in both models stress is relieved by rotation of the (SiO4)-2 tetrahedrons, increasing Si-O-Si bonding angles, and only small changes in the tetrahedron dimensions and O-Si-O angles.


2020 ◽  
Author(s):  
Paolo Raiteri ◽  
Peter Kraus ◽  
Julian Gale

Molecular dynamics simulations of the liquid-liquid interface between water and 1,2-Dichloroethane in the presence of weak external electric fields.<div>The effect of the use of 3D periodic Ewald summation and the effect of the simulation setup are discussed.</div><div>A new simple geometric method for designing the simulation cell is proposed. This method was thoroughly tested shown that it mitigates any artefacts to the use of 3D Ewald summation with external electric field.</div>


1997 ◽  
Vol 52 (1-2) ◽  
pp. 89-96 ◽  
Author(s):  
Thereza Amélia Soares ◽  
Roberto Dias Lins ◽  
Ricardo Longo ◽  
Richard Garratt ◽  
Ricardo Ferreira

Abstract By computer simulations -molecular mechanics and molecular dynamics with the amber force field (Weiner et al., (1986), J. Comp. Chem. 7, 2 30-252) -we have determined the stabilities of oligoribotide strands built with ᴅ -and ʟ-riboses, and of peptide chains with ᴅ -and ʟ-amino acid residues. In particular, complementary double-chains of oligoribotides were studied, since they are an important feature of the growing mechanism of modern nucleic acids. Peptide chains on the other hand, grow without need of a template. We found that mixed oligoribotides are less stable than homochiral ones, and that this chiral effect is less noticeable in peptide chains. The results support the interpretation that ʟ-riboses act as terminators to the template-assisted growth of oligo-r-Gᴅ (enantiomeric cross-inhibition; Joyce et al., (1987), Proc. Natl. Acad. Sci. USA 84, 4398-4402). Based on this effect, a chemical pathway is proposed which could, under assumed prebiotic conditions, bypass the hindrance of homochiral growth.


Sign in / Sign up

Export Citation Format

Share Document