Molecular dynamics computer simulations of sputtering of benzene sample by large mixed Lennard-Jones clusters

Author(s):  
L. Rzeznik ◽  
Z. Postawa
1997 ◽  
Vol 126 ◽  
pp. 35-42 ◽  
Author(s):  
Walter Kob ◽  
Markus Nauroth ◽  
Hans C. Andersen

Using molecular dynamics computer simulations, we investigate the dynamics of a binary Lennard-Jones system at low temperatures. We show that this dynamics can be described well by mode-coupling theory. By solving numerically the mode-coupling equations for this system, we demonstrate that the theory is not only able to correctly predict the universal properties of this dynamics but also the nonuniversal properties.


Author(s):  
Toshihiro Kaneko ◽  
Kenji Yasuoka ◽  
Ayori Mitsutake ◽  
Xiao Cheng Zeng

Multicanonical molecular dynamics simulations are applied, for the first time, to study the liquid-solid and solid-solid transitions in Lennard-Jones (LJ) clusters. The transition temperatures are estimated based on the peak position in the heat capacity versus temperature curve. For LJ31, LJ58 and LJ98, our results on the solid-solid transition temperature are in good agreement with previous ones. For LJ309, the predicted liquid-solid transition temperature is also in agreement with previous result.


1996 ◽  
Vol 436 ◽  
Author(s):  
J. N. Glosli ◽  
M. R. Philpott ◽  
J. Belak

AbstractMolecular dynamics computer simulations are used to study the effect of substrate temperature on the microstructure of deposited amorphous hydrogenated carbon (a:CH) films. A transition from dense diamond-like films to porous graphite-like films is observed between substrate temperatures of 400K and 600K for a deposition energy of 20 eV. The dense a:CH film grown at 300K and 20 eV has a hardness (˜50 GPa) about half that of a pure carbon (a:C) film grown under the same conditions.


1993 ◽  
Vol 317 ◽  
Author(s):  
N.A. Marks ◽  
P. Guan ◽  
D.R. Mckenzie ◽  
B.A. PailThorpe

ABSTRACTMolecular dynamics simulations of nickel and carbon have been used to study the phenomena due to ion impact. The nickel and carbon interactions were described using the Lennard-Jones and Stillinger-Weber potentials respectively. The phenomena occurring after the impact of 100 e V to 1 keV ions were studied in the nickel simulations, which were both two and three-dimensional. Supersonic focussed collision sequences (or focusons) were observed, and associated with these focusons were unexpected sonic bow waves, which were a major energy loss mechanism for the focuson. A number of 2D carbon films were grown and the stress in the films as a function of incident ion energy was Measured. With increasing energy the stress changed from tensile to compressive and reached a maximum around 50 eV, in agreement with experiment.


Sign in / Sign up

Export Citation Format

Share Document