Growth and optical properties of SrBi2Nb2O9 ferroelectric thin films using pulsed laser deposition

2003 ◽  
Vol 93 (11) ◽  
pp. 9226-9230 ◽  
Author(s):  
Pingxiong Yang ◽  
David L. Carroll ◽  
John Ballato ◽  
Robert W. Schwartz
2001 ◽  
Vol 11 (PR11) ◽  
pp. Pr11-133-Pr11-137
Author(s):  
J. R. Duclère ◽  
M. Guilloux-Viry ◽  
A. Perrin ◽  
A. Dauscher ◽  
S. Weber ◽  
...  

2009 ◽  
Vol 67 ◽  
pp. 65-70 ◽  
Author(s):  
Gaurav Shukla ◽  
Alika K. Khare

TiO2 is a widely studied material for many important applications in areas such as environmental purification, photocatalyst, gas sensors, cancer therapy and high effect solar cell. However, investigations demonstrated that the properties and applications of titanium oxide films depend upon the nature of the crystalline phases present in the films, i.e. anatase and rutile phases. We report on the pulsed laser deposition of high quality TiO2 thin films. Pulsed Laser deposition of TiO2 thin films were performed in different ambient viz. oxygen, argon and vacuum, using a second harmonic of Nd:YAG laser of 6 ns pulse width. These deposited films of TiO2 were further annealed for 5hrs in air at different temperatures. TiO2 thin films were characterized using x-ray diffraction, SEM, photoluminescence, transmittance and reflectance. We observed effect of annealing over structural, morphological and optical properties of TiO2 thin films. The anatase phase of as-deposited TiO2 thin films is found to change into rutile phase with increased annealing temperature. Increase in crystalline behaviour of thin films with post-annealing temperature is also observed. Surface morphology of TiO2 thin films is dependent upon ambient pressure and post- annealing temperature. TiO2 thin films are found to be optically transparent with very low reflectivity hence will be suitable for antireflection coating applications.


1991 ◽  
Vol 243 ◽  
Author(s):  
K. Nashimoto ◽  
D. K. Fork ◽  
F. A. Ponce ◽  
T. H. Geballe

AbstractEpitaxial growth of ferroelectric thin films on GaAs (100) by pulsed laser deposition was examined for integrated electro-optic device applications. To promote epitaxy of ferroelectrics and prevent interdiffusion, we have deposited several types of buffer layers. CeO2 reacted strongly with GaAs. Although Y203 9% stabilized-ZrO2 films showed epitaxial growth, YSZ reacted with GaAs at 780°C. MgO grew epitaxially and was stable even at 780°C. HRTEM observation showed a sharp interface between MgO and GaAs. BaTiO3 and SrTiO3 deposited on MgO/GaAs structures showed epitaxial growth. In-plane orientation was BaTiO3 [100 // MgO [100] // GaAs [100]. Epitaxial BaTiO3 films were c-axis oriented tetragonal phase and showed ferroelectric hysteresis.


Sign in / Sign up

Export Citation Format

Share Document