Pore Size Distribution Measurement of Porous Low-k Dielectrics Using TR-SAXS

Author(s):  
Shinichi Terada
2000 ◽  
Vol 612 ◽  
Author(s):  
M.R. Baklanov ◽  
K.P. Mogilnikov

AbstractEllipsometric porosimetry (EP) is a simple and effective method for the characterization of the porosity (volume of both open and close pores), average pore size, specific surface area and pore size distribution (PSD) in thin porous films deposited on top of any smooth solid substrat e. Because a laser probe is used, small surface area can be analyzed. Therefore, EP can be used on patterned wafers and it is compatible with microelectronic technology. This method is a new version of adsorption (BET) porosimetry. In situ ellipsometry is used to determine the amount of adsorptive which adsorbed/condensed in the film. Change in refractive index is used to calculate of the quantity of adsorptive present in the film. EP also allows the study of thermal stability, adsorption and swelling properties of low-K dielectric films. Room temperature EP based on the adsorption of vapor of some suitable organic solvents and method of calculation of porosity and PSD is discussed. Examination of the validity of Gurvitsch rule for various organic adsorptives (toluene, heptane, carbon tetrachloride and isopropyl alcohol) has been carried out to assess the reliability of measurements of pore size distribution by the ellipsometric porosimetry.


2017 ◽  
Vol 31 (11) ◽  
pp. 11884-11891 ◽  
Author(s):  
Keji Wan ◽  
Pengchao Ji ◽  
Zhenyong Miao ◽  
Zishan Chen ◽  
Yongjiang Wan ◽  
...  

Author(s):  
S. Kawamura ◽  
K. Maekawa ◽  
T. Ohta ◽  
K. Omote ◽  
R. Suzuki ◽  
...  

2019 ◽  
Author(s):  
Paul Iacomi ◽  
Philip L. Llewellyn

Material characterisation through adsorption is a widely-used laboratory technique. The isotherms obtained through volumetric or gravimetric experiments impart insight through their features but can also be analysed to determine material characteristics such as specific surface area, pore size distribution, surface energetics, or used for predicting mixture adsorption. The pyGAPS (python General Adsorption Processing Suite) framework was developed to address the need for high-throughput processing of such adsorption data, independent of the origin, while also being capable of presenting individual results in a user-friendly manner. It contains many common characterisation methods such as: BET and Langmuir surface area, t and α plots, pore size distribution calculations (BJH, Dollimore-Heal, Horvath-Kawazoe, DFT/NLDFT kernel fitting), isosteric heat calculations, IAST calculations, isotherm modelling and more, as well as the ability to import and store data from Excel, CSV, JSON and sqlite databases. In this work, a description of the capabilities of pyGAPS is presented. The code is then be used in two case studies: a routine characterisation of a UiO-66(Zr) sample and in the processing of an adsorption dataset of a commercial carbon (Takeda 5A) for applications in gas separation.


Sign in / Sign up

Export Citation Format

Share Document