Inertia and Gravitation as Vacuum Effects — the case for Passive Gravitational Mass

2004 ◽  
Author(s):  
Alfonso Rueda
2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
A. G. Lebed

We define passive and active gravitational mass operators of the simplest composite quantum body—a hydrogen atom. Although they do not commute with its energy operator, the equivalence between the expectation values of passive and active gravitational masses and energy is shown to survive for stationary quantum states. In our calculations of passive gravitational mass operator, we take into account not only kinetic and Coulomb potential energies but also the so-called relativistic corrections to electron motion in a hydrogen atom. Inequivalence between passive and active gravitational masses and energy at a macroscopic level is demonstrated to reveal itself as time-dependent oscillations of the expectation values of the gravitational masses for superpositions of stationary quantum states. Breakdown of the equivalence between passive gravitational mass and energy at a microscopic level reveals itself as unusual electromagnetic radiation, emitted by macroscopic ensemble of hydrogen atoms, moved by small spacecraft with constant velocity in the Earth’s gravitational field. We suggest the corresponding experiment on the Earth’s orbit to detect this radiation, which would be the first direct experiment where quantum effects in general relativity are observed.


2012 ◽  
Vol 21 (11) ◽  
pp. 1242022 ◽  
Author(s):  
HOMER G. ELLIS

Albert Einstein's real "biggest blunder" was not the 1917 introduction into his gravitational field equations of a cosmological constant term Λ, rather was his failure in 1916 to distinguish between the entirely different concepts of active gravitational mass and passive gravitational mass. Had he made the distinction, and followed David Hilbert's lead in deriving field equations from a variational principle, he might have discovered a true (not a cut and paste) Einstein–Rosen bridge and a cosmological model that would have allowed him to predict, long before such phenomena were imagined by others, inflation, a big bounce (not a big bang), an accelerating expansion of the universe, dark matter, and the existence of cosmic voids, walls, filaments and nodes.


2020 ◽  
Vol 35 (20) ◽  
pp. 2030010
Author(s):  
Andrei G. Lebed

We review our recent theoretical results about inequivalence between passive gravitational mass and energy for a composite quantum body at a macroscopic level. In particular, we consider macroscopic ensembles of the simplest composite quantum bodies — hydrogen atoms. Our results are as follows. For the most ensembles, the Einstein’s Equivalence Principle is valid. On the other hand, we discuss that for some special quantum ensembles — ensembles of the coherent superpositions of the stationary quantum states in the hydrogen atoms (which we call Gravitational demons) — the Equivalence Principle between passive gravitational mass and energy is broken. We show that, for such superpositions, the expectation values of passive gravitational masses are not related to the expectation values of energies by the famous Einstein’s equation, i.e. [Formula: see text]. Possible experiments at the Earth’s laboratories are briefly discussed, in contrast to the numerous attempts and projects to discover the possible breakdown of the Einstein’s Equivalence Principle during the space missions.


1972 ◽  
Vol 3 (4) ◽  
pp. 403-404 ◽  
Author(s):  
V. B. Braginsky ◽  
V. I. Panov

1964 ◽  
Vol 26 (3) ◽  
pp. 442-517 ◽  
Author(s):  
P.G Roll ◽  
R Krotkov ◽  
R.H Dicke

2019 ◽  
Vol 28 (12) ◽  
pp. 1930020 ◽  
Author(s):  
Andrei G. Lebed

We review our recent theoretical results about inequivalence between passive and active gravitational masses and energy in the semiclassical variant of general relativity, where the gravitational field is not quantized but matter is quantized. To this end, we consider the simplest quantum body with internal degrees of freedom — a hydrogen atom. We concentrate our attention on the following physical effects, related to electron mass. The first one is the inequivalence between passive gravitational mass and energy at the microscopic level. Indeed, the quantum measurement of gravitational mass can give a result which is different from the expected one, [Formula: see text], where the electron is initially in its ground state; [Formula: see text] is the bare electron mass. The second effect is that the expectation values of both the passive and active gravitational masses of stationary quantum states are equivalent to the expectation value of the energy. The most spectacular effects are the inequivalence of the passive and active gravitational masses and the energy at the macroscopic level for an ensemble of coherent superpositions of stationary quantum states. We show that, for such superpositions, the expectation values of passive and active gravitational masses are not related to the expectation value of energy by Einstein’s famous equation, [Formula: see text]. In this paper, we also improve several drawbacks of the original pioneering works.


Sign in / Sign up

Export Citation Format

Share Document