scholarly journals EINSTEIN'S REAL "BIGGEST BLUNDER"

2012 ◽  
Vol 21 (11) ◽  
pp. 1242022 ◽  
Author(s):  
HOMER G. ELLIS

Albert Einstein's real "biggest blunder" was not the 1917 introduction into his gravitational field equations of a cosmological constant term Λ, rather was his failure in 1916 to distinguish between the entirely different concepts of active gravitational mass and passive gravitational mass. Had he made the distinction, and followed David Hilbert's lead in deriving field equations from a variational principle, he might have discovered a true (not a cut and paste) Einstein–Rosen bridge and a cosmological model that would have allowed him to predict, long before such phenomena were imagined by others, inflation, a big bounce (not a big bang), an accelerating expansion of the universe, dark matter, and the existence of cosmic voids, walls, filaments and nodes.

2017 ◽  
Vol 26 (07) ◽  
pp. 1750073 ◽  
Author(s):  
J. A. Belinchón ◽  
T. Harko ◽  
M. K. Mak

Scalar–tensor gravitational theories are important extensions of standard general relativity, which can explain both the initial inflationary evolution, as well as the late accelerating expansion of the universe. In the present paper, we investigate the cosmological solution of a scalar–tensor gravitational theory, in which the scalar field [Formula: see text] couples to the geometry via an arbitrary function [Formula: see text]. The kinetic energy of the scalar field as well as its self-interaction potential [Formula: see text] are also included in the gravitational action. By using a standard mathematical procedure, the Lie group approach, and Noether symmetry techniques, we obtain several exact solutions of the gravitational field equations describing the time evolutions of a flat Friedman–Robertson–Walker universe in the framework of the scalar–tensor gravity. The obtained solutions can describe both accelerating and decelerating phases during the cosmological expansion of the universe.


2015 ◽  
Vol 24 (08) ◽  
pp. 1550069 ◽  
Author(s):  
Homer G. Ellis

Giving up Einstein's assumption, implicit in his 1916 field equations, that inertial mass, even in its appearance as energy, is equivalent to active gravitational mass and therefore is a source of gravity allows revising the field equations to a form in which a positive cosmological constant is seen to (mis)represent a uniform negative net mass density of gravitationally attractive and gravitationally repulsive matter. Field equations with both positive and negative active gravitational mass densities of both primordial and continuously created matter, incorporated along with two scalar fields to 'relax the constraints' on the spacetime geometry, yield cosmological solutions that exhibit inflation, deceleration, coasting, acceleration, and a 'big bounce' instead of a 'big bang,' and provide good fits to a Hubble diagram of Type Ia supernovae data. The repulsive matter is identified as the back sides of the 'drainholes' introduced by the author in 1973 as solutions of those same field equations. Drainholes (prototypical examples of 'traversable wormholes') are topological tunnels in space which gravitationally attract on their front, entrance sides, and repel more strongly on their back, exit sides. The front sides serve both as the gravitating cores of the visible, baryonic particles of primordial matter and as the continuously created, invisible particles of the 'dark matter' needed to hold together the large-scale structures seen in the universe; the back sides serve as the misnamed 'dark energy' driving the current acceleration of the expansion of the universe. Formation of cosmic voids, walls, filaments and nodes is attributed to expulsion of drainhole entrances from regions populated by drainhole exits and accumulation of the entrances on boundaries separating those regions.


2014 ◽  
Vol 29 (01) ◽  
pp. 1450007 ◽  
Author(s):  
B. RAYCHAUDHURI ◽  
F. RAHAMAN ◽  
M. KALAM

Einstein introduced cosmological constant in his field equations in an ad hoc manner. Cosmological constant plays the role of vacuum energy of the universe which is responsible for the accelerating expansion of the universe. To give a theoretical support, it remains an elusive goal to modern physicists. We provide a prescription to obtain cosmological constant from the phase transitions of the early universe when topological defects, namely monopole might have existed.


2016 ◽  
Vol 25 (04) ◽  
pp. 1650045 ◽  
Author(s):  
Amir Pouyan Khosravi Karchi ◽  
Hossein Shojaie

In this paper, the field equations of a chameleon field in which the matter Lagrangian term is a general function of the scalar field as well as matter field, are derived. The equations are then expressed in Friedmann–Lemaître–Robertson–Walker (FLRW) framework and the associated phase portraits and a power law solution are discussed in details. It is shown that why nonminimal coupling between the chameleon and matter fields leads to an energy transfer between the fields, which consequently affects the expansion rate of the universe. The transfer direction is determined by the second law of thermodynamics. The solution indicates that an accelerating expansion of the universe can be described as a result of the energy flow from the chameleon field to matter field.


2019 ◽  
Author(s):  
Matheus Pereira Lobo

We propose the discussion of a highly speculative idea for the scenario where black hole collisions and their subsequent increase in sizes exceed the expansion of the universe.


2019 ◽  
Vol 127 ◽  
pp. 02009
Author(s):  
Boris Shevtsov

Nonlinear oscillations in the dynamic system of gravitational and material fields are considered. The problems of singularities and caustics in gravity, expansion and baryon asymmetry of the Universe, wave prohibition of collapse into black holes, and failure of the Big Bang concept are discussed. It is assumed that the effects of the expansion of the Universe are coupling with the reverse collapse of dark matter. This hypothesis is used to substantiate the vortex and fractal structures in the distribution of matter. A system of equations is proposed for describing turbulent and fluctuation processes in gravitational and material fields. Estimates of the di usion parameters of such a system are made in comparison with the gravitational constant.


Universe ◽  
2021 ◽  
Vol 7 (7) ◽  
pp. 205
Author(s):  
Sanjay Mandal ◽  
Avik De ◽  
Tee-How Loo ◽  
Pradyumn Kumar Sahoo

The objective of the present paper is to investigate an almost-pseudo-Ricci symmetric FRW spacetime with a constant Ricci scalar in a dynamic cosmological term Λ(t) and equation of state (EoS) ω(t) scenario. Several cosmological parameters are calculated in this setting and thoroughly studied, which shows that the model satisfies the late-time accelerating expansion of the universe. We also examine all of the energy conditions to check our model’s self-stability.


Universe ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 67
Author(s):  
Salim Harun Shekh ◽  
Pedro H. R. S. Moraes ◽  
Pradyumn Kumar Sahoo

In the present article, we investigate the physical acceptability of the spatially homogeneous and isotropic Friedmann–Lemâitre–Robertson–Walker line element filled with two fluids, with the first being pressureless matter and the second being different types of holographic dark energy. This geometric and material content is considered within the gravitational field equations of the f(T,B) (where T is the torsion scalar and the B is the boundary term) gravity in Hubble’s cut-off. The cosmological parameters, such as the Equation of State (EoS) parameter, during the cosmic evolution, are calculated. The models are stable throughout the universe expansion. The region in which the model is presented is dependent on the real parameter δ of holographic dark energies. For all δ≥4.5, the models vary from ΛCDM era to the quintessence era.


2015 ◽  
Vol 3 (1) ◽  
pp. 40
Author(s):  
Hasmukh Tank

<p>Astronomical observations of the cosmological red-shift are currently interpreted in terms of ‘expansion of universe’ and ‘accelerated-expansion of the universe’, at the rate of <em>H<sub>0</sub> c</em>; here <em>H<sub>0</sub></em> is Hubble’s constant, and c is the speed of light. Whereas a straight-forward derivation presented here suggests that: rather it is the photon which is decelerating, at the rate of <em>H<sub>0</sub> c</em>. Such a deceleration of photons can be caused by virtual electrons, positrons and pi-mesons, contained in the extra galactic quantum vacuum, because: they do have gravitational-acceleration of the same order as <em>H<sub>0</sub> c</em> at their “surfaces”; or by decay of a photon into a lighter photon and a particle of mass <em>h H<sub>0</sub> / c<sup>2</sup></em>. Tired-light interpretations of the cosmological red-shift’ were so far considered as not compatible with the observations of ‘time-dilation of super-novae light-curves’; so in a paper titled: “Wave-theoretical insight into the relativistic ‘length-contraction’ and ‘time-dilation of super-novae light-curves’” (Tank, Hasmukh K. 2013), it has been already shown that any mechanism which can cause ‘cosmological red-shift’ will also cause ‘time-dilation of super-novae light-curves’.  Therefore, we now need not to remain confined to the Big-Bang model of cosmology.</p>


Sign in / Sign up

Export Citation Format

Share Document