Spatial and Temporal Measurements Of The Impulsive Pressure Generated By Cavitation Bubble Collapse Near A Solid Boundary

2006 ◽  
Author(s):  
Yi-Chun Wang
2011 ◽  
Vol 27 (2) ◽  
pp. 253-266 ◽  
Author(s):  
S.-H. Yang ◽  
S.-Y. Jaw ◽  
K.-C. Yeh

ABSTRACTThis study utilized a U-shape platform device to generate a single cavitation bubble for the detail analysis of the flow field characteristics and the cause of the counter jet during the process of bubble collapse induced by pressure wave. A series of bubble collapse flows induced by pressure waves of different strengths are investigated by positioning the cavitation bubble at different stand-off distances to the solid boundary. It is found that the Kelvin-Helmholtz vortices are formed when the liquid jet induced by the pressure wave penetrates the bubble surface. If the bubble center to the solid boundary is within one to three times the bubble's radius, a stagnation ring will form on the boundary when impacted by the penetrated jet. The liquid inside the stagnation ring is squeezed toward the center of the ring to form a counter jet after the bubble collapses. At the critical position, where the bubble center from the solid boundary is about three times the bubble's radius, the bubble collapse flows will vary. Depending on the strengths of the pressure waves applied, either just the Kelvin-Helmholtz vortices form around the penetrated jet or the penetrated jet impacts the boundary directly to generate the stagnation ring and the counter jet flow. This phenomenon used the particle image velocimetry method can be clearly revealed the flow field variation of the counter jet. If the bubble surface is in contact with the solid boundary, the liquid jet can only splash radially without producing the stagnation ring and the counter jet. The complex phenomenon of cavitation bubble collapse flows are clearly manifested in this study.


1972 ◽  
Vol 94 (4) ◽  
pp. 825-832 ◽  
Author(s):  
C. L. Kling ◽  
F. G. Hammitt

The collapse of spark-induced cavitation bubbles in a flowing system was studied by means of high speed photography. The migration of cavitation bubbles toward a nearby solid boundary during collapse and rebound was observed. Near its minimum volume the bubble typically formed a high speed microjet, which struck the nearby surface causing individual damage craters on soft aluminum.


2014 ◽  
Vol 755 ◽  
pp. 142-175 ◽  
Author(s):  
Chao-Tsung Hsiao ◽  
A. Jayaprakash ◽  
A. Kapahi ◽  
J.-K. Choi ◽  
Georges L. Chahine

AbstractMaterial pitting from cavitation bubble collapse is investigated numerically including two-way fluid–structure interaction (FSI). A hybrid numerical approach which links an incompressible boundary element method (BEM) solver and a compressible finite difference flow solver is applied to capture non-spherical bubble dynamics efficiently and accurately. The flow codes solve the fluid dynamics while intimately coupling the solution with a finite element structure code to enable simulation of the full FSI. During bubble collapse high impulsive pressures result from the impact of the bubble re-entrant jet on the material surface and from the collapse of the remaining bubble ring. A pit forms on the material surface when the impulsive pressure is large enough to result in high equivalent stresses exceeding the material yield stress. The results depend on bubble dynamics parameters such as the size of the bubble at its maximum volume, the bubble standoff distance from the material wall, and the pressure driving the bubble collapse. The effects of these parameters on the re-entrant jet, the following bubble ring collapse pressure, and the generated material pit characteristics are investigated.


2006 ◽  
Vol 41 (3) ◽  
pp. 365-373 ◽  
Author(s):  
Yi-Chun Wang ◽  
Ching-Hung Huang ◽  
Yung-Chun Lee ◽  
Ho-Hsun Tsai

Author(s):  
A Shima ◽  
Y. Tomita ◽  
K Takahashi

An experimental study concerning the shock wave—bubble interaction was conducted in order to obtain a unified consideration of the mechanism of the impulsive pressure generation induced by the cavitation bubble collapse. It was found that the relation between the maximum impulsive pressure, pG, max, and the relative distance, lc/Re, is closely similar to the known result obtained from a single spark-generated bubble, and that a gas bubble within the region of lc/Re ≤ 7 behaves as a source capable of generating more intensive impulsive pressure than the impact pressure induced by a shock wave impinging directly on a solid wall without the presence of a gas bubble.


Author(s):  
Sheng-Hsueh Yang ◽  
Shenq-Yuh Jaw ◽  
Keh-Chia Yeh

In this study, a single cavitation bubble is generated by rotating a U-tube filled with water. A series of bubble collapse flows induced by pressure waves of different strengths are investigated by positioning the cavitation bubble at different stand-off distances to a solid boundary. Particle images of bubble collapse flow recorded by high speed CCD camera are analyzed by multi-grid, iterative particle image distortion method. Detail velocity variations of the transient bubble collapse flow are obtained. It is found that a Kelvin–Helmholtz vortex is formed when a liquid jet penetrates the bubble surface. If the bubble center to the solid boundary is within one to three times of the bubble radius, the liquid jet is able to impinge the solid boundary to form a stagnation ring. The fluid inside the stagnation ring will be squeezed toward the center of the ring to form a counter jet. At certain critical position, the bubble collapse flow will produce a Kelvin–Helmholtz vortex, the Richtmyer-Meshkov instability, or the generation of a counter jet flow, depending on the strengths of the pressure waves. If the bubble surface is in contact with the solid boundary, the liquid jet can only splash inside-out without producing the stagnation ring and the counter jet. The complex phenomenon of cavitation bubble collapse flows is clearly manifested in this study.


2021 ◽  
Vol 106 ◽  
pp. 103370
Author(s):  
Prasanta Sarkar ◽  
Giovanni Ghigliotti ◽  
Jean-Pierre Franc ◽  
Marc Fivel

Sign in / Sign up

Export Citation Format

Share Document