Cinematographic Analysis of Counter Jet Formation in a Single Cavitation Bubble Collapse Flow

2011 ◽  
Vol 27 (2) ◽  
pp. 253-266 ◽  
Author(s):  
S.-H. Yang ◽  
S.-Y. Jaw ◽  
K.-C. Yeh

ABSTRACTThis study utilized a U-shape platform device to generate a single cavitation bubble for the detail analysis of the flow field characteristics and the cause of the counter jet during the process of bubble collapse induced by pressure wave. A series of bubble collapse flows induced by pressure waves of different strengths are investigated by positioning the cavitation bubble at different stand-off distances to the solid boundary. It is found that the Kelvin-Helmholtz vortices are formed when the liquid jet induced by the pressure wave penetrates the bubble surface. If the bubble center to the solid boundary is within one to three times the bubble's radius, a stagnation ring will form on the boundary when impacted by the penetrated jet. The liquid inside the stagnation ring is squeezed toward the center of the ring to form a counter jet after the bubble collapses. At the critical position, where the bubble center from the solid boundary is about three times the bubble's radius, the bubble collapse flows will vary. Depending on the strengths of the pressure waves applied, either just the Kelvin-Helmholtz vortices form around the penetrated jet or the penetrated jet impacts the boundary directly to generate the stagnation ring and the counter jet flow. This phenomenon used the particle image velocimetry method can be clearly revealed the flow field variation of the counter jet. If the bubble surface is in contact with the solid boundary, the liquid jet can only splash radially without producing the stagnation ring and the counter jet. The complex phenomenon of cavitation bubble collapse flows are clearly manifested in this study.

Author(s):  
Sheng-Hsueh Yang ◽  
Shenq-Yuh Jaw ◽  
Keh-Chia Yeh

In this study, a single cavitation bubble is generated by rotating a U-tube filled with water. A series of bubble collapse flows induced by pressure waves of different strengths are investigated by positioning the cavitation bubble at different stand-off distances to a solid boundary. Particle images of bubble collapse flow recorded by high speed CCD camera are analyzed by multi-grid, iterative particle image distortion method. Detail velocity variations of the transient bubble collapse flow are obtained. It is found that a Kelvin–Helmholtz vortex is formed when a liquid jet penetrates the bubble surface. If the bubble center to the solid boundary is within one to three times of the bubble radius, the liquid jet is able to impinge the solid boundary to form a stagnation ring. The fluid inside the stagnation ring will be squeezed toward the center of the ring to form a counter jet. At certain critical position, the bubble collapse flow will produce a Kelvin–Helmholtz vortex, the Richtmyer-Meshkov instability, or the generation of a counter jet flow, depending on the strengths of the pressure waves. If the bubble surface is in contact with the solid boundary, the liquid jet can only splash inside-out without producing the stagnation ring and the counter jet. The complex phenomenon of cavitation bubble collapse flows is clearly manifested in this study.


1972 ◽  
Vol 94 (4) ◽  
pp. 825-832 ◽  
Author(s):  
C. L. Kling ◽  
F. G. Hammitt

The collapse of spark-induced cavitation bubbles in a flowing system was studied by means of high speed photography. The migration of cavitation bubbles toward a nearby solid boundary during collapse and rebound was observed. Near its minimum volume the bubble typically formed a high speed microjet, which struck the nearby surface causing individual damage craters on soft aluminum.


2014 ◽  
Vol 34 ◽  
pp. 1460374
Author(s):  
B.C. KHOO ◽  
J.G. ZHENG

The present study is focused on the numerical simulation of pressure wave propagation through the cavitating compressible liquid flow, its interaction with cavitation bubble and the resulting unsteady cavitation evolution. The compressibility effects of liquid water are taken into account and the cavitating flow is governed by one-fluid cavitation model which is based on the compressible Euler equations with the assumption that the cavitation is the homogeneous mixture of liquid and vapour which are locally under both kinetic and thermodynamic equilibrium. Several aspects of the method employed to solve the governing equations are outlined. The unsteady features of cavitating flow due to the external perturbation, such as the cavitation deformation and collapse and consequent pressure increase are resolved numerically and discussed in detail. It is observed that the cavitation bubble collapse is accompanied by the huge pressure surge of order of 100 bar, which is thought to be responsible for the material erosion, noise, vibration and loss of efficiency of operating underwater devices.


2013 ◽  
Vol 135 (1) ◽  
Author(s):  
R. Fortes-Patella ◽  
G. Challier ◽  
J. L. Reboud ◽  
A. Archer

An original approach based on energy balance between vapor bubble collapse, emitted pressure wave, and neighboring solid wall response was proposed, developed, and tested to estimate the aggressiveness of cavitating flows. In the first part of the work, to improve a prediction method for cavitation erosion (Fortes-Patella and Reboud, 1998, “A New Approach to Evaluate the Cavitation Erosion Power,” ASME J. Fluids Eng., 120(2), pp. 335–344; Fortes-Patella and Reboud, 1998, “Energetical Approach and Impact Efficiency in Cavitation Erosion,” Proceedings of Third International Symposium on Cavitation, Grenoble, France), we were interested in studying the pressure waves emitted during bubble collapse. The radial dynamics of a spherical vapor/gas bubble in a compressible and viscous liquid was studied by means of Keller's and Fujikawa and Akamatsu's physical models (Prosperetti, 1994, “Bubbles Dynamics: Some Things we did not Know 10 Years Ago,” Bubble Dynamics and Interface Phenomena, Blake, Boulton-Stone, Thomas, eds., Kluwer Academic Publishers, Dordrecht, the Netherlands, pp. 3–15; Fujikawa and Akamatsu, 1980, “Effects of Non-Equilibrium Condensation of Vapor on the Pressure Wave Produced by Collapse of a Bubble in Liquid,” J. Fluid Mech., 97(3), pp. 481–512). The pressure amplitude, the profile, and the energy of the pressure waves emitted during cavity collapses were evaluated by numerical simulations. The model was validated by comparisons with experiments carried out at Laboratoire Laser, Plasma et Procédés Photoniques (LP3-IRPHE) (Marseille, France) with laser-induced bubble (Isselin et al., 1998, “Investigations of Material Damages Induced by an Isolated Vapor Bubble Created by Pulsed Laser,” Proceedings of Third International Symposium on Cavitation, Grenoble, France; Isselin et al., 1998, “On Laser Induced Single Bubble Near a Solid Boundary: Contribution to the Understanding of Erosion Phenomena,” J. Appl. Phys., 84(10), pp. 5766–5771). The efficiency of the first collapse ηwave/bubble (defined as the ratio between pressure wave energy and initial bubble potential energy) was evaluated for different bubble collapses. For the cases considered of collapse in a constant-pressure field, the study pointed out the strong influence of the air contents on the bubble dynamics, on the emitted pressure wave characteristics, and on the collapse efficiency. In the second part of the study, the dynamic response and the surface deformation (i.e., pit profile and pit volume) of various materials exposed to pressure wave impacts was simulated making use of a 2D axisymmetric numerical code simulating the interaction between pressure wave and an elastoplastic solid. Making use of numerical results, a new parameter β (defined as the ratio between the pressure wave energy and the generated pit volume) was introduced and evaluated for three materials (aluminum, copper, and stainless steel). By associating numerical simulations and experimental results concerning pitted samples exposed to cavitating flows (volume damage rate), the pressure wave power density and the flow aggressiveness potential power were introduced. These physical properties of the flow characterize the cavitation intensity and can be related to the flow hydrodynamic conditions. Associated to β and ηwave/bubble parameters, these power densities appeared to be useful tools to predict the cavitation erosion power.


Author(s):  
Shuai Zhang ◽  
Shiping Wang ◽  
Yunlong Liu

In this paper, we present a high-voltage electric-spark bubble-generating method which can generate a bubble with its maximum radius reaching up to ∼35 mm at a room pressure. Vertical migration and clear liquid jet inside the bubble are captured by a high speed photography. With this method, a series of experiments on bubbles collapse above a solid boundary are carried out under different non-dimensional standoff distances γ (= s/Rm, where s is the vertical distance from the bubble center to the solid boundary and Rm denotes the maximum bubble radius). It is found when bubble is extremely close to the solid boundary (γ < 0.6), the lower surface of the bubble will cling to the solid boundary, which causes the cone-shaped liquid jet to impact on solid boundary directly without buffering of the water layer. With the increase of γ, the bottom of the bubble is gradually away from the solid boundary with an increasing curvature, but the jet inside the bubble remains conical all along. The speed of the jet tip and the migration of the bubble top are also discussed subsequently, aiming to provide a reference for the numerical study. Finally, the critical value of γ is investigated, at which the effect of the buoyancy will compensate the attraction of the solid boundary when the buoyancy parameter of bubble is bout 0.06.


Sign in / Sign up

Export Citation Format

Share Document