High Quality Image of Biomedical Object by X-ray Refraction Based Contrast Computed Tomography

2007 ◽  
Author(s):  
E. Hashimoto ◽  
A. Maksimenko ◽  
H. Sugiyama ◽  
K. Hirano ◽  
K. Hyodo ◽  
...  
2005 ◽  
Vol 11 (S02) ◽  
Author(s):  
K Yoshida ◽  
T Furutsu ◽  
S Shimojo ◽  
H Mori

2021 ◽  
Author(s):  
Khalid Labib Alsamadony ◽  
Ertugrul Umut Yildirim ◽  
Guenther Glatz ◽  
Umair bin Waheed ◽  
Sherif M. Hanafy

Abstract Computed tomography (CT) is an important tool to characterize rock samples allowing quantification of physical properties in 3D and 4D. The accuracy of a property delineated from CT data is strongly correlated with the CT image quality. In general, high-quality, lower noise CT Images mandate greater exposure times. With increasing exposure time, however, more wear is put on the X-Ray tube and longer cooldown periods are required, inevitably limiting the temporal resolution of the particular phenomena under investigation. In this work, we propose a deep convolutional neural network (DCNN) based approach to improve the quality of images collected during reduced exposure time scans. First, we convolve long exposure time images from medical CT scanner with a blur kernel to mimic the degradation caused because of reduced exposure time scanning. Subsequently, utilizing the high- and low-quality scan stacks, we train a DCNN. The trained network enables us to restore any low-quality scan for which high-quality reference is not available. Furthermore, we investigate several factors affecting the DCNN performance such as the number of training images, transfer learning strategies, and loss functions. The results indicate that the number of training images is an important factor since the predictive capability of the DCNN improves as the number of training images increases. We illustrate, however, that the requirement for a large training dataset can be reduced by exploiting transfer learning. In addition, training the DCNN on mean squared error (MSE) as a loss function outperforms both mean absolute error (MAE) and Peak signal-to-noise ratio (PSNR) loss functions with respect to image quality metrics. The presented approach enables the prediction of high-quality images from low exposure CT images. Consequently, this allows for continued scanning without the need for X-Ray tube to cool down, thereby maximizing the temporal resolution. This is of particular value for any core flood experiment seeking to capture the underlying dynamics.


Author(s):  
Marc Granado-González ◽  
César Jesús-Valls ◽  
Thorsten Lux ◽  
Tony Price ◽  
Federico Sánchez

Abstract Proton beam therapy can potentially offer improved treatment for cancers of the head and neck and in paediatric patients. There has been asharp uptake of proton beam therapy in recent years as improved delivery techniques and patient benefits are observed. However, treatments are currently planned using conventional x-ray CT images due to the absence of devices able to perform high quality proton computed tomography(pCT) under realistic clinical conditions. A new plastic-scintillator-based range telescope concept, named ASTRA, is proposed here to measure the proton’s energy loss in a pCT system. Simulations conducted using GEANT4 yield an expected energy resolution of 0.7%. If calorimetric information is used the energy resolution could be further improved to about 0.5%. In addition, the ability of ASTRA to track multiple protons simultaneously is presented. Due to its fast components, ASTRA is expected to reach unprecedented data collection rates, similar to 10^8 protons/s.The performance of ASTRA has also been tested by simulating the imaging of phantoms. The results show excellent image contrast and relative stopping power reconstruction.


2008 ◽  
Author(s):  
Takahiro Saito ◽  
Yuki Ishii ◽  
Haruya Aizawa ◽  
Takashi Komatsu

Sign in / Sign up

Export Citation Format

Share Document