Boundary Layer Control by Means of Plasma Actuators

2007 ◽  
Author(s):  
R. Quadros ◽  
A. L. de Bortoli ◽  
C. Tropea ◽  
Theodore E. Simos ◽  
George Psihoyios ◽  
...  
Author(s):  
F. F. Rodrigues ◽  
J. C. Pascoa ◽  
M. Trancossi

Active flow control by plasma actuators is a topic of great interest by worldwide scientific community. These devices are mainly used for boundary layer control in order to improve the aerodynamic performance of aerial vehicles. Plasma actuators are simple devices that produces a wall bounded jet which allow to control the adjacent flow without moving mechanical parts. Recently, new geometries have been proposed by different authors in an attempt to improve the performance of these devices. In this work, some of these new configurations will be studied and compared considering its ability for boundary layer control applications. Dielectric Barrier Discharge (DBD) plasma actuator, Plasma Synthetic Jet (PSJ) actuator, Multiple Encapsulated Electrodes (MEE) plasma actuator and Curved plasma actuator (or 3D plasma actuator) will be experimentally studied in this work. Plasma actuators power consumption was measured by two different experimental methods. Results for power consumption and power losses of different plasma actuators geometries were presented and discussed.


Author(s):  
F. Rodrigues ◽  
José C. Páscoa ◽  
F. Dias ◽  
M. Abdollahzadeh

DBD plasma actuators are simple devices comprising two electrodes separated by a dielectric layer. One of the electrodes is covered by the dielectric layer and is completely insulated from the other one, which is exposed to the atmosphere in the top of the dielectric layer. The DBD plasma actuator operates by applying to the two electrodes an high voltage at high frequency from a power supply. When the amplitude of the applied voltage is large enough, in the exposed electrode, an ionization of the air (plasma) occurs over the dielectric surface which, in the presence of the electric field gradient, produces a body force on the ionized air particles. This induces a flow that draws ionized air along the surface of the actuator and it accelerates this neutral air towards downstream, in a direction tangential to the dielectric. Herein we will present this next generation plasma actuator for boundary layer control, which is demonstrated on the acceleration of the flow in a Coanda nozzle wall, thus contributing to help vectoring the exit jet flow. It will be shown that using only the plasma actuator it will be possible to vectorize the exit jet flow even under pure axial flow at the nozzle exit. Experimental results are obtained using flow visualization and Particle Image Velocimetry.


Author(s):  
Kwing-So Choi ◽  
Timothy Jukes ◽  
Richard Whalley

This paper reviews turbulent boundary-layer control strategies for skin-friction reduction of aerodynamic bodies. The focus is placed on the drag-reduction mechanisms by two flow control techniques—spanwise oscillation and spanwise travelling wave, which were demonstrated to give up to 45 per cent skin-friction reductions. We show that these techniques can be implemented by dielectric-barrier discharge plasma actuators, which are electric devices that do not require any moving parts or complicated ducting. The experimental results show different modifications to the near-wall structures depending on the control technique.


Author(s):  
Yueqiang Li ◽  
Chao Gao ◽  
Bin Wu ◽  
Yushuai Wang ◽  
Haibo Zheng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document