Plasma Actuators for Boundary Layer Control of Next Generation Nozzles

Author(s):  
F. Rodrigues ◽  
José C. Páscoa ◽  
F. Dias ◽  
M. Abdollahzadeh

DBD plasma actuators are simple devices comprising two electrodes separated by a dielectric layer. One of the electrodes is covered by the dielectric layer and is completely insulated from the other one, which is exposed to the atmosphere in the top of the dielectric layer. The DBD plasma actuator operates by applying to the two electrodes an high voltage at high frequency from a power supply. When the amplitude of the applied voltage is large enough, in the exposed electrode, an ionization of the air (plasma) occurs over the dielectric surface which, in the presence of the electric field gradient, produces a body force on the ionized air particles. This induces a flow that draws ionized air along the surface of the actuator and it accelerates this neutral air towards downstream, in a direction tangential to the dielectric. Herein we will present this next generation plasma actuator for boundary layer control, which is demonstrated on the acceleration of the flow in a Coanda nozzle wall, thus contributing to help vectoring the exit jet flow. It will be shown that using only the plasma actuator it will be possible to vectorize the exit jet flow even under pure axial flow at the nozzle exit. Experimental results are obtained using flow visualization and Particle Image Velocimetry.

Author(s):  
F. F. Rodrigues ◽  
J. C. Pascoa ◽  
M. Trancossi

Active flow control by plasma actuators is a topic of great interest by worldwide scientific community. These devices are mainly used for boundary layer control in order to improve the aerodynamic performance of aerial vehicles. Plasma actuators are simple devices that produces a wall bounded jet which allow to control the adjacent flow without moving mechanical parts. Recently, new geometries have been proposed by different authors in an attempt to improve the performance of these devices. In this work, some of these new configurations will be studied and compared considering its ability for boundary layer control applications. Dielectric Barrier Discharge (DBD) plasma actuator, Plasma Synthetic Jet (PSJ) actuator, Multiple Encapsulated Electrodes (MEE) plasma actuator and Curved plasma actuator (or 3D plasma actuator) will be experimentally studied in this work. Plasma actuators power consumption was measured by two different experimental methods. Results for power consumption and power losses of different plasma actuators geometries were presented and discussed.


Author(s):  
Yueqiang Li ◽  
Chao Gao ◽  
Bin Wu ◽  
Yushuai Wang ◽  
Haibo Zheng ◽  
...  

Author(s):  
Christopher Porter ◽  
Tom McLaughlin ◽  
C Enloe ◽  
Gabriel Font ◽  
Jason Roney ◽  
...  

Author(s):  
Xiaofei Xu ◽  
Huu Duc Vo ◽  
Njuki Mureithi ◽  
Xue Feng Zhang

Following an experimental investigation into suppression of a 2-D turbulent boundary layer separation with dielectric barrier discharge (DBD) plasma actuators, the present work investigates the concept numerically. The purpose is to develop and validate a simulation tool that captures the flow physics and carry out a parametric study of the concept at flow regimes beyond the current flow control capability of plasma actuators of conventional strength. First, a plasma actuator model is integrated into the commercial computational fluid dynamics (CFD) code ANSYS CFX to simulate the effects of plasma actuation. This computational tool is validated through comparison of results with the experimental results for pulsed actuation in quiescent air and for the control of a turbulent boundary layer separation at low flow velocities. It is shown that CFX with an integrated plasma model can capture the main experimentally observed effects of DBD actuators on turbulent boundary layer separation. Subsequently, this numerical approach is used, with increased plasma actuator strength, to study the influence of different actuation parameters (e.g., actuation location, direction and frequency) on suppression of turbulent boundary layer separation at higher flow velocities.


2007 ◽  
Author(s):  
R. Quadros ◽  
A. L. de Bortoli ◽  
C. Tropea ◽  
Theodore E. Simos ◽  
George Psihoyios ◽  
...  

Author(s):  
Kwing-So Choi ◽  
Timothy Jukes ◽  
Richard Whalley

This paper reviews turbulent boundary-layer control strategies for skin-friction reduction of aerodynamic bodies. The focus is placed on the drag-reduction mechanisms by two flow control techniques—spanwise oscillation and spanwise travelling wave, which were demonstrated to give up to 45 per cent skin-friction reductions. We show that these techniques can be implemented by dielectric-barrier discharge plasma actuators, which are electric devices that do not require any moving parts or complicated ducting. The experimental results show different modifications to the near-wall structures depending on the control technique.


Author(s):  
Hongyu Jin ◽  
Takashi Ono ◽  
Motoaki Kimura

Dielectric barrier discharge (DBD) plasma actuators have been investigated by many researchers as flow-control devices. In the present study, we attempt to apply such actuators to a jet flow. In order to achieve enhanced mixing in a jet flow, we focused on the voltage and the frequency of the plasma actuator to examine their effect on the velocity and turbulence of the jet flow. This time, we examined how the induced flow by the plasma actuator electrode dimensions occurred. It was expected that higher velocity would have a larger effect on the jet flow in last year. In this study, we measured the flow velocity for different voltages and frequencies, and determined the most effective conditions for generating the induced flow. We apply that DBD plasma actuators to enhance turbulent intensity and jet flow’s diffusion.


Author(s):  
Hua Shan ◽  
Shawn Aram ◽  
Yu-Tai Lee

Active flow separation control using dielectric barrier discharge (DBD) plasma actuators oriented in the spanwise direction has been successfully investigated by the authors using an integrated numerical simulation tool that couples the unsteady Reynolds averaged Navier-Stokes (URANS) or large eddy simulation (LES) solver for incompressible flows with the DBD electro-hydrodynamic (EHD) body force model. Although many experimental and numerical investigations have indicated that the spanwise-oriented DBD plasma actuator is an effective flow control method, the application is difficult to extend from model-scale to full-scale problems, partly due to the required high amplitude and high bandwidth excitation. Also, the flow control mechanism associated with a spanwise-oriented DBD actuator is mainly direct momentum injection, therefore, the effectiveness of actuation is sensitive to the location of the DBD actuator relative to the location of flow separation. On the other hand, a few experimental studies have shown promising results using the DBD Vortex Generator (DBD-VG) consisting of multiple plasma DBD actuators oriented in the streamwise direction. By generating streamwise vortices extending a long distance downstream, the DBD-VGs enhance the mixing of the inner and outer layers of turbulent boundary layer flows. As a result, the boundary layer can better withstand an adverse pressure gradient. When applied to flow separation control, the effectiveness of the DBD-VGs should be less sensitive to location of flow separation. The present work extends the capability of the integrated numerical simulation tool from a single spanwise-oriented DBD plasma actuator to multiple DBD plasma actuators oriented in any direction, including the streamwise direction. As a demonstration of the new capability in the DBD-URANS coupled solver, numerical simulations of flow induced by a DBD-VG actuator with an array of exposed electrodes in a quiescent environment, as well as in a turbulent boundary layer over a flat plate, are carried out. The numerical simulation successfully reproduced the longitudinal vortices embedded in the boundary layer.


Sign in / Sign up

Export Citation Format

Share Document