Burial of the polar magnetic field of an accreting neutron star and gravitational wave emission

2008 ◽  
Author(s):  
D. J. B. Payne ◽  
M. Vigelius ◽  
A. Melatos ◽  
Ye-Fei Yuan ◽  
Xiang-Dong Li ◽  
...  
Universe ◽  
2021 ◽  
Vol 7 (10) ◽  
pp. 381
Author(s):  
Sourav Roy Chowdhury ◽  
Maxim Khlopov

Magnetars have already been a potential candidate as gravitational wave sources that could be detected by current and future terrestrial as well as ground-based gravitational wave detectors. In this article, we focus on the gravitational wave emission from the distorted rotating neutron stars. The deformation is assumed to be symmetric around an axis that is perpendicular to the rotation axis. The form is applied in the context of a neutron star whose magnetic field has been deformed on its own. By introducing the effects from all magnetars in the Universe, based on various proposed magnetic field configurations, such as poloidal and toroidal, the stochastic gravitational wave background can be generated. We choose to figure out exactly how the observations of the stochastic gravitational wave background should be used to understand much more about physics correlated with the magnetar behavior, based on the restriction on the ellipticity of the magnetar.


2011 ◽  
Vol 417 (3) ◽  
pp. 2288-2299 ◽  
Author(s):  
A. Mastrano ◽  
A. Melatos ◽  
A. Reisenegger ◽  
T. Akgün

2020 ◽  
Vol 497 (2) ◽  
pp. 1966-1971 ◽  
Author(s):  
Amber K Lenon ◽  
Alexander H Nitz ◽  
Duncan A Brown

ABSTRACT Two binary neutron star mergers, GW170817 and GW190425, have been detected by Advanced LIGO and Virgo. These signals were detected by matched-filter searches that assume that the star’s orbit has circularized by the time their gravitational-wave emission is observable. This suggests that their eccentricity is low, but full parameter estimation of their eccentricity has not yet been performed. We use gravitational-wave observations to measure the eccentricity of GW170817 and GW190425. We find that the eccentricity at a gravitational-wave frequency of 10 Hz is e ≤ 0.024 and e ≤ 0.048 for GW170817 and GW190425, respectively (90 per cent confidence). This is consistent with the binaries being formed in the field, as such systems are expected to have circularized to e ≤ 10−4 by the time they reach the LIGO–Virgo band. Our constraint is a factor of 2 smaller that an estimate based on GW170817 being detected by searches that neglect eccentricity. However, we caution that we find significant prior dependence in our limits, suggesting that there is limited information in the signals. We note that other techniques used to constrain binary neutron star eccentricity without full parameter estimation may miss degeneracies in the waveform, and that for future signals, it will be important to perform full parameter estimation with accurate waveform templates.


2018 ◽  
Vol 168 ◽  
pp. 01006
Author(s):  
J. A. Rueda ◽  
R. Ruffini ◽  
J. F. Rodriguez ◽  
M. Muccino ◽  
Y. Aimuratov ◽  
...  

We have sub-classified short and long-duration gamma-ray bursts (GRBs) into seven families according to the binary nature of their progenitors. Short GRBs are produced in mergers of neutron-star binaries (NS-NS) or neutron star-black hole binaries (NS-BH). Long GRBs are produced via the induced gravitational collapse (IGC) scenario occurring in a tight binary system composed of a carbon-oxygen core (COcore) and a NS companion. The COcore explodes as type Ic supernova (SN) leading to a hypercritical accretion process onto the NS: if the accretion is sufficiently high the NS reaches the critical mass and collapses forming a BH, otherwise a massive NS is formed. Therefore long GRBs can lead either to NS-BH or to NS-NS binaries depending on the entity of the accretion. We discuss for the above compact-object binaries: 1) the role of the NS structure and the nuclear equation of state; 2) the occurrence rates obtained from X and gamma-rays observations; 3) the predicted annual number of detections by the Advanced LIGO interferometer of their gravitational-wave emission.


2017 ◽  
Vol 96 (12) ◽  
Author(s):  
Katerina Chatziioannou ◽  
James Alexander Clark ◽  
Andreas Bauswein ◽  
Margaret Millhouse ◽  
Tyson B. Littenberg ◽  
...  

2019 ◽  
Vol 489 (2) ◽  
pp. 1820-1827 ◽  
Author(s):  
Gavin P Lamb ◽  
Shiho Kobayashi

ABSTRACT The afterglows to gamma-ray bursts (GRBs) are due to synchrotron emission from shocks generated as an ultrarelativistic outflow decelerates. A forward and a reverse shock will form, however, where emission from the forward shock is well studied as a potential counterpart to gravitational wave-detected neutron star mergers the reverse shock has been neglected. Here, we show how the reverse shock contributes to the afterglow from an off-axis and structured outflow. The off-axis reverse shock will appear as a brightening feature in the rising afterglow at radio frequencies. For bursts at ∼100 Mpc, the system should be inclined ≲20° for the reverse shock to be observable at ∼0.1–10 d post-merger. For structured outflows, enhancement of the reverse shock emission by a strong magnetic field within the outflow is required for the emission to dominate the afterglow at early times. Early radio photometry of the afterglow could reveal the presence of a strong magnetic field associated with the central engine.


Sign in / Sign up

Export Citation Format

Share Document