scholarly journals Reverse shocks in the relativistic outflows of gravitational wave-detected neutron star binary mergers

2019 ◽  
Vol 489 (2) ◽  
pp. 1820-1827 ◽  
Author(s):  
Gavin P Lamb ◽  
Shiho Kobayashi

ABSTRACT The afterglows to gamma-ray bursts (GRBs) are due to synchrotron emission from shocks generated as an ultrarelativistic outflow decelerates. A forward and a reverse shock will form, however, where emission from the forward shock is well studied as a potential counterpart to gravitational wave-detected neutron star mergers the reverse shock has been neglected. Here, we show how the reverse shock contributes to the afterglow from an off-axis and structured outflow. The off-axis reverse shock will appear as a brightening feature in the rising afterglow at radio frequencies. For bursts at ∼100 Mpc, the system should be inclined ≲20° for the reverse shock to be observable at ∼0.1–10 d post-merger. For structured outflows, enhancement of the reverse shock emission by a strong magnetic field within the outflow is required for the emission to dominate the afterglow at early times. Early radio photometry of the afterglow could reveal the presence of a strong magnetic field associated with the central engine.

2015 ◽  
Vol 30 (28n29) ◽  
pp. 1545023
Author(s):  
R. Ruffini ◽  
Y. Aimuratov ◽  
C. L. Bianco ◽  
M. Enderli ◽  
M. Kovacevic ◽  
...  

We review the recent progress in understanding the nature of gamma-ray bursts (GRBs). The occurrence of GRB is explained by the Induced Gravitational Collapse (IGC) in FeCO Core–Neutron star binaries and Neutron star–Neutron star binary mergers, both processes occur within binary system progenitors. Making use of this most unexpected new paradigm, with the fundamental implications by the neutron star (NS) critical mass, we find that different initial configurations of binary systems lead to different GRB families with specific new physical predictions confirmed by observations.


2005 ◽  
Vol 192 ◽  
pp. 503-508
Author(s):  
Stephan Rosswog ◽  
Enrico Ramírez-Ruiz

SummaryWe assess the ability of neutron star binary coalescence to produce short gamma-ray bursts (GRBs). We find that the neutrino annihilation above the merged remnant will drive bipolar, relativistic jets along the initial binary rotation axis. This outflow can be collimated by the energetic, neutrino-driven baryonic wind that is blown off the remnant. Despite the narrow neutron star mass distribution the apparent luminosities will be spread over a broad range from ~ 1049 to ~ 1052erg s−1, typical jet opening half-angles are around 5 degrees. If the central core of the merger remnant does not collapse immediately convective dynamo action will set in and the available kinetic energy can be transformed into magnetic fields in excess of 1017 G. The corresponding spin-down time scale is ~ 0.2 s, just about the duration of a short GRB.


1996 ◽  
Vol 160 ◽  
pp. 361-362
Author(s):  
Hitoshi Hanami

AbstractWe propose magnetic cannon ball mechanism in which the collapse of a magnetosphere onto a black hole can generate strong outward Poynting flux which can drive a baryon-free fireball. This process can occur at the final collapsing phase of a neutron star with strong magnetic field. The magnetic cannon ball can drive a relativistic outflow without the rotation of the central object. This baryon-free process can explain gamma-ray bursts as the final phase of dead pulsars.


2020 ◽  
Vol 499 (4) ◽  
pp. 5986-5992
Author(s):  
Nikhil Sarin ◽  
Paul D Lasky ◽  
Gregory Ashton

ABSTRACT The spin-down energy of millisecond magnetars has been invoked to explain X-ray afterglow observations of a significant fraction of short and long gamma-ray bursts. Here, we extend models previously introduced in the literature, incorporating radiative losses with the spin-down of a magnetar central engine through an arbitrary braking index. Combining this with a model for the tail of the prompt emission, we show that our model can better explain the data than millisecond-magnetar models without radiative losses or those that invoke spin-down solely through vacuum dipole radiation. We find that our model predicts a subset of X-ray flares seen in some gamma-ray bursts. We can further explain the diversity of X-ray plateaus by altering the radiative efficiency and measure the braking index of newly born millisecond magnetars. We measure the braking index of GRB061121 as $n=4.85^{+0.11}_{-0.15}$ suggesting the millisecond-magnetar born in this gamma-ray burst spins down predominantly through gravitational-wave emission.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
J. J. Geng ◽  
Y. F. Huang

The detection of optical rebrightenings and X-ray plateaus in the afterglows of gamma-ray bursts (GRBs) challenges the generic external shock model. Recently, we have developed a numerical method to calculate the dynamics of the system consisting of a forward shock and a reverse shock. Here, we briefly review the applications of this method in the afterglow theory. By relating these diverse features to the central engines of GRBs, we find that the steep optical rebrightenings would be caused by the fall-back accretion of black holes, while the shallow optical rebrightenings are the consequence of the injection of the electron-positron-pair wind from the central magnetar. These studies provide useful ways to probe the characteristics of GRB central engines.


Author(s):  
P. T. O'Brien ◽  
P. Evans

The dawn of the gravitational-wave (GW) era has sparked a greatly renewed interest into possible links between sources of high-energy radiation and GWs. The most luminous high-energy sources—gamma-ray bursts (GRBs)—have long been considered as very likely sources of GWs, particularly from short-duration GRBs, which are thought to originate from the merger of two compact objects such as binary neutron stars and a neutron star–black hole binary. In this paper, we discuss: (i) the high-energy emission from short-duration GRBs; (ii) what other sources of high-energy radiation may be observed from binary mergers; and (iii) how searches for high-energy electromagnetic counterparts to GW events are performed with current space facilities. While current high-energy facilities, such as Swift and Fermi, play a crucial role in the search for electromagnetic counterparts, new space missions will greatly enhance our capabilities for joint observations. We discuss why such facilities, which incorporate new technology that enables very wide-field X-ray imaging, are required if we are to truly exploit the multi-messenger era. This article is part of a discussion meeting issue ‘The promises of gravitational-wave astronomy’.


Author(s):  
Nils Andersson

This chapter provides a brief survey of gravitational-wave astronomy, including the recent recent breakthrough detection. It sets the stage for the rest of the book via simple back-of-the-envelope estimates for different sets of sources. The chapter also describes the first detection of a black hole merger (GW150914) as well as the first observed neutron star binary event (GW170817) and introduces some of the ideas required to understand these breakthroughs.


1987 ◽  
Vol 125 ◽  
pp. 450-450
Author(s):  
S. Shibata

Pulsar may be regarded as a discharge tube by electron-positron pair creation. On this viewpoint we carry out two numerical calculations. The obtained magnetic field is consistent with the flow. We find that pulsars emit their rotational energy through three modes simultaneously. The three modes are (1)relativistic acceleration and following gamma-ray emission in the closed current circuit in the magnetosphere, (2)wind of the electron-positron pair plasma, and (3)dipole radiation.


Sign in / Sign up

Export Citation Format

Share Document