New line profiles of sodium and potassium perturbed by helium for brown dwarf and very cool white dwarf stars

2008 ◽  
Author(s):  
M. Christova ◽  
N. F. Allard ◽  
J. F. Kielkopf ◽  
D. Homeier ◽  
F. Allard ◽  
...  
1989 ◽  
Vol 114 ◽  
pp. 296-299
Author(s):  
J. L. Provencal ◽  
J. C. Clemens ◽  
G. Henry ◽  
B. P. Hine ◽  
R. E. Nather ◽  
...  

White dwarf stars provide important boundary conditions for the understanding of stellar evolution. An adequate understanding of even these simple stars is impossible without detailed knowledge of their interiors. PG1346+082, an interacting binary white dwarf system, provides a unique opportunity to view the interior of one degenerate as it is brought to light in the accretion disk of the second star as the primary strips material from its less massive companion (see Wood et at. 1987).PG1346+082 is a photometric variable with a four magnitude variation over a four to five day quasi-period. A fast Fourier transform (FFT) of the light curve shows a complex, time-dependent structure of harmonics. PG1346+082 exhibits flickering – the signature of mass transfer. The optical spectra of the system contain weak emission features during minimum and broad absorption at all other times. This could be attributed to pressure broadening in the atmosphere of a compact object, or to a combination of pressure broadening and doppler broadening in a disk surrounding the compact accretor. No hydrogen lines are observed and the spectra are dominated by neutral helium. The spectra also display variable asymmetric line profiles.


Science ◽  
2019 ◽  
Vol 364 (6435) ◽  
pp. 66-69 ◽  
Author(s):  
Christopher J. Manser ◽  
Boris T. Gänsicke ◽  
Siegfried Eggl ◽  
Mark Hollands ◽  
Paula Izquierdo ◽  
...  

Many white dwarf stars show signs of having accreted smaller bodies, implying that they may host planetary systems. A small number of these systems contain gaseous debris discs, visible through emission lines. We report a stable 123.4-minute periodic variation in the strength and shape of the Ca ii emission line profiles originating from the debris disc around the white dwarf SDSS J122859.93+104032.9. We interpret this short-period signal as the signature of a solid-body planetesimal held together by its internal strength.


2011 ◽  
Vol 20 (4) ◽  
Author(s):  
P. Dufour ◽  
N. Ben Nessib ◽  
S. Sahal-Bréchot ◽  
M. S. Dimitrijević

AbstractWhite dwarf stars are traditionally found to have surface compositions made primarily of hydrogen or helium. However, a new family has recently been uncovered, the so-called hot DQ white dwarfs, which have surface compositions dominated by carbon and oxygen with little or no trace of hydrogen and helium (Dufour et al. 2007, 2008, 2010). Deriving precise atmospheric parameters for these objects (such as the effective temperature and the surface gravity) requires detailed modeling of spectral line profiles. Stark broadening parameters are of crucial importance in that context. We present preliminary results from our new generation of model atmospheres including the latest Stark broadening calculations for C II lines and discuss the implications as well as future work that remains to be done.


1987 ◽  
Vol 93 ◽  
pp. 785-794
Author(s):  
J.-E. Solheim ◽  
O. Kjeldseth-Moe

AbstractThe close binary system Am CVn consists of two helium white dwarf stars in close orbit. Strong flickering in the optical light curve and the observed spin-up in the rotation period indicate that mass transfer takes place (Solheim et al., 1984). The optical spectrum shows broad helium absorption lines (Robinson and Faulkner, 1975) sometimes partly filled in by emission (Voikhanskaya, 1982). The optical spectrum shows no sign of hydrogen, and the line profiles are interpreted as due to an accretion disk of intermediate angle of inclination with a temperature of the order of 20.000 K (Robinson and Faulkner, 1975). Another possibility is direct accretion onto a magnetized BD white dwarf (Voikhanskaya, 1982). In the latter case a magnetic field B ≃ 106 to 109 gauss is needed. Voikhanskaya also reports significant changes in the absorption line profiles from 1978 to 1980.


2004 ◽  
Vol 602 (2) ◽  
pp. L109-L112 ◽  
Author(s):  
D. E. Winget ◽  
D. J. Sullivan ◽  
T. S. Metcalfe ◽  
S. D. Kawaler ◽  
M. H. Montgomery

2017 ◽  
Vol 598 ◽  
pp. A109 ◽  
Author(s):  
N. Giammichele ◽  
S. Charpinet ◽  
P. Brassard ◽  
G. Fontaine

2018 ◽  
Vol 616 ◽  
pp. A80 ◽  
Author(s):  
Julieta P. Sánchez Arias ◽  
Alejandra D. Romero ◽  
Alejandro H. Córsico ◽  
Ingrid Pelisoli ◽  
Victoria Antoci ◽  
...  

Context. Pulsating extremely low-mass pre-white dwarf stars (pre-ELMV), with masses between ~0.15 M⊙ and ~0.30 M⊙, constitute a new class of variable stars showing g- and possibly p-mode pulsations with periods between 320 and 6000 s (frequencies between 14.4 and 270 c/d), driven by the κ mechanism operating in the second He ionization zone. On the other hand, main sequence δ Scuti stars, with masses between 1.2 and 2.5 M⊙, pulsate in low-order g and p modes with periods in the range [700–28 800] s (frequencies in the range [3–123] c/d), driven by the κ mechanism operating in the He II ionization zone and the turbulent pressure acting in the HI ionization layer. Interestingly enough, the instability strips of pre-ELM white dwarf and δ Scuti stars nearly overlap in the Teff vs. log g diagram, leading to a degeneracy when spectroscopy is the only tool to classify the stars and pulsation periods only are considered. Aims. Pre-ELM white dwarf and δ Scuti stars are in very different stages of evolution and therefore their internal structure is very distinct. This is mirrored in their pulsational behavior, thus employing asteroseismology should allow us to distinguish between these groups of stars despite their similar atmospheric parameters. Methods. We have employed adiabatic and non-adiabatic pulsation spectra for models of pre-ELM white dwarfs and δ Scuti stars, and compare their pulsation periods, period spacings, and rates of period change. Results. Unsurprisingly, we found substantial differences in the period spacing of δ Scuti and pre-ELM white dwarf models. Even when the same period range is observed in both classes of pulsating stars, the modes have distinctive signature in the period spacing and period difference values. For instance, the mean period difference of p-modes of consecutive radial orders for δ Scuti model are at least four times longer than the mean period spacing for the pre-ELM white dwarf model in the period range [2000–4600] s (frequency range [18.78–43.6] c/d). In addition, the rate of period change is two orders of magnitudes larger for the pre-ELM white dwarfs compared to δ Scuti stars. In addition, we also report the discovery of a new variable star, SDSSJ075738.94+144827.50, located in the region of the Teff versus log g diagram where these two kind of stars coexist. Conclusions.The characteristic spacing between modes of consecutive radial orders (p as well as g modes) and the large differences found in the rates of period change for δ Scuti and pre-ELM white dwarf stars suggest that asteroseismology can be employed to discriminate between these two groups of variable stars. Furthermore, we found that SDSSJ075738.94+144827.50 exhibits a period difference between p modes characteristic of a δ Sct star, assuming consecutive radial order for the observed periods.


1990 ◽  
Vol 53 (7) ◽  
pp. 837-915 ◽  
Author(s):  
D Koester ◽  
G Chanmugam

Sign in / Sign up

Export Citation Format

Share Document