close orbit
Recently Published Documents


TOTAL DOCUMENTS

30
(FIVE YEARS 9)

H-INDEX

7
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Michelle Lavagna ◽  
John Brucato ◽  
Jacopo Prinetto ◽  
Andrea Capannolo ◽  
Michele Bechini ◽  
...  

<p>Deimos and Phobos are considered primary targets of investigation to understand the origin and evolution of Mars and more in general the terrestrial planets of the Solar System. </p> <p>TASTE mission aims complementing MMX investigation by focusing on Deimos surface, combining both <strong>global remote sensing</strong> observations from a close orbit and<strong> direct in-situ analyses</strong> of the surface thanks to a lander release on Deimos. With a synergy between orbital and in-situ investigations, the proposed mission will contribute to the Deimos global morphology understanding; its global elemental abundance; landing site morphology and texture; landing site organic content and surface composition. TASTE is conceived as a Cubesat-in-Cubesat mission: a 12U space asset composed by a <strong>9U orbiter </strong>and a<strong> 3U lander</strong>. The former embarks an <strong>X-gamma ray spectrometer</strong> developed by OAT and a multispectral camera, the second is equipped with a  <strong>miniaturized Surface Sample Analyser</strong> (SSA), composed by a new Sample Acquisition Mechanism (SAM), conceived by PoliMi and a Surface Analytical Laboratory (SAL)  developed by INAF OAA. <br />The mission is conceived to keep the orbiter on a QSO nearby Deimos to facilitate the lander release and the scientific operations in synergy with the lander itself. Details on science, space assets sizing and design and mission science operations will be discussed in deep. </p>


2021 ◽  
Vol 503 (3) ◽  
pp. 3540-3551 ◽  
Author(s):  
Hai-Liang Chen ◽  
Thomas M Tauris ◽  
Zhanwen Han ◽  
Xuefei Chen

ABSTRACT Close-orbit low-mass X-ray binaries (LMXBs), radio binary millisecond pulsars (BMSPs) with extremely low-mass helium white dwarfs (ELM He WDs) and ultra-compact X-ray binaries (UCXBs) are all part of the same evolutionary sequence. It is therefore of uttermost importance to understand how these populations evolve from one specie to another. Moreover, UCXBs are important gravitational wave (GW) sources and can be detected by future space-borne GW observatories. However, the formation and evolutionary link between these three different populations of neutron star (NS) binaries are not fully understood. In particular, a peculiar fine-tuning problem has previously been demonstrated for the formation of these systems. In this investigation, we test a newly suggested magnetic braking prescription and model the formation and evolution of LMXBs. We compute a grid of binary evolution models and present the initial parameter space of the progenitor binaries which successfully evolve all the way to produce UCXBs. We find that the initial orbital period range of LMXBs, which evolve into detached NS + ELM He WD binaries and later UCXBs, becomes significantly wider compared to evolution with a standard magnetic braking prescription, and thus helps to relieve the fine-tuning problem. However, we also find that formation of wide-orbit BMSPs is prohibited for strong versions of this new magnetic braking prescription, which therefore calls for a revision of the prescription. Finally, we present examples of the properties of UCXBs as Galactic GW sources and discuss their detection by the LISA, TianQin, and Taiji observatories.


2020 ◽  
Vol 493 (2) ◽  
pp. 1855-1873 ◽  
Author(s):  
R Di Stefano

ABSTRACT Close-orbit binaries consisting of two compact objects are a centre of attention because of the detection of gravitational-radiation-induced mergers. The creation of close, compact-object binaries involves physical processes that are not yet well understood; there are open questions about the manner in which two compact objects come to be close enough to merge within a Hubble time. Here, we explore an important, and likely common physical process: mass transfer from a third star in a wider, hierarchical orbit. Mass added to the close binary’s components can reduce the time to merger and can even change the nature of an accretor, transforming a white dwarf to a neutron star and/or a neutron star to a black hole. Some accreting WDs in close binaries may even explode as Type Ia supernovae. Given the ubiquity of higher order multiples, the evolutionary channels we lay out may be important pathways to gravitational mergers, including Type Ia supernovae. Fortunately, these pathways also lead to testable predictions.


2019 ◽  
Vol 492 (2) ◽  
pp. 1579-1593
Author(s):  
Anne Zilles ◽  
Kumiko Kotera ◽  
Rene Rohrmann ◽  
Leandro Althaus

ABSTRACT Binary systems composed of a recycled millisecond pulsar and a stellar companion in close orbit could be excellent sites to diagnose pulsar winds. In such systems, the pulsar outflow irradiates and heats up the companion atmosphere, which can lead to the observation of strong day/night modulations in temperature. We demonstrate with particle shower simulations that the particle energy of the wind affects the heating depth in the atmosphere: the wind heat can be deposited above or below the photosphere, leading to different signatures in the observed spectra. We apply our method to four specific systems: We find that systems with cool night-side companions showing strong temperature variations can give interesting lower limits on the particle energy in the winds. In particular, if the companion night side of PSR B1957+20 were to be suddenly irradiated, deep heating would only take place if particles with energy >100 TeV were present. Observational evidence of deep heating in this system thus suggests that (i) such particles exist in the pulsar wind and/or (ii) binary evolution non-trivially takes the companion to the observed temperature asymmetry. Besides, the observed temperature difference can be maintained only with particle energies of the order of 100 MeV.


2019 ◽  
Vol 623 ◽  
pp. A34 ◽  
Author(s):  
Wolfgang E. Kerzendorf ◽  
Tuan Do ◽  
Selma E. de Mink ◽  
Ylva Götberg ◽  
Dan Milisavljevic ◽  
...  

Massive stars in binaries can give rise to extreme phenomena such as X-ray binaries and gravitational wave sources after one or both stars end their lives as core-collapse supernovae. Stars in close orbit around a stellar or compact companion are expected to explode as “stripped-envelope supernovae”, showing no (Type Ib/c) or little (Type IIb) signs of hydrogen in the spectra, because hydrogen-rich progenitors are too large to fit. The physical processes responsible for the stripping process and the fate of the companion are still very poorly understood. Aiming to find new clues, we investigate Cas A, which is a very young (∼340 yr) and near (∼3.4 kpc) remnant of a core-collapse supernova. Cas A has been subject to several searches for possible companions, all unsuccessfully. We present new measurements of the proper motions and photometry of stars in the vicinity based on deep HST ACS/WFC and WFC3-IR data. We identify stellar sources that are close enough in projection but using their proper motions we show that none are compatible with being at the location of center at the time of explosion, in agreement with earlier findings. Our photometric measurements allow us to place much deeper (order-of-magnitude) upper limits on the brightness of possible undetected companions. We systematically compare them with model predictions for a wide variety of scenarios. We can confidently rule out the presence of any stellar companion of any reasonable mass and age (main sequence, pre main sequence or stripped) ruling out what many considered to be likely evolutionary scenarios for Type IIb supernova (SN IIb). More exotic scenarios that predict the presence of a compact companion (white dwarf, neutron star or black hole) are still possible as well as scenarios where the progenitor of Cas A was single at the moment of explosion (either because it was truly single, or resulted from a binary that was disrupted, or from a binary merger). The presence of a compact companion would imply that Cas A is of interest to study exotic outcomes of binary evolution. The single-at-death solution would still require fine-tuning of the process that removed most of the envelope through a mass-loss mechanism yet to be identified. We discuss how future constraints from Gaia and even deeper photometric studies may help to place further constraints.


2019 ◽  
Vol 622 ◽  
pp. A189 ◽  
Author(s):  
I. El Mellah ◽  
A. A. C. Sander ◽  
J. O. Sundqvist ◽  
R. Keppens

Context. In supergiant X-ray binaries (SgXB), a compact object captures a fraction of the wind of an O/B supergiant on a close orbit. Proxies exist to evaluate the efficiency of mass and angular momentum accretion, but they depend so dramatically on the wind speed that given the current uncertainties, they only set loose constraints. Furthermore, these proxies often bypass the impact of orbital and shock effects on the flow structure. Aims. We study the wind dynamics and angular momentum gained as the flow is accreted. We identify the conditions for the formation of a disk-like structure around the accretor and the observational consequences for SgXB. Methods. We used recent results on the wind launching mechanism to compute 3D streamlines, accounting for the gravitational and X-ray ionizing influence of the compact companion on the wind. Once the flow enters the Roche lobe of the accretor, we solved the hydrodynamics equations with cooling. Results. A shocked region forms around the accretor as the flow is beamed. For wind speeds on the order of the orbital speed, the shock is highly asymmetric compared to the axisymmetric bow shock obtained for a purely planar homogeneous flow. With net radiative cooling, the flow always circularizes for sufficiently low wind speeds. Conclusions. Although the donor star does not fill its Roche lobe, the wind can be significantly beamed and bent by the orbital effects. The net angular momentum of the accreted flow is then sufficient to form a persistent disk-like structure. This mechanism could explain the proposed limited outer extension of the accretion disk in Cygnus X-1 and suggests the presence of a disk at the outer rim of the neutron star magnetosphere in Vela X-1 and has dramatic consequences on the spinning up of the accretor.


2019 ◽  
Vol 51 (1) ◽  
pp. 275-303 ◽  
Author(s):  
Raymond T. Pierrehumbert ◽  
Mark Hammond

Tide-locked planets are planets in which tidal stresses from the host star have spun down the planet's rotation to the point where its length of sidereal day equals its length of year. In a nearly circular orbit, such planets have a permanent dayside and a permanent nightside, leading to extreme heating contrasts. In this article, the atmospheric circulations forced by this heating contrast are explored, with a focus on terrestrial planets; here, “terrestrial” refers to planets with a condensed solid or liquid surface at which most of the incident stellar radiation is absorbed and does not imply habitability in the Earthlike sense. The census of exoplanets contains many terrestrial planets that are very likely to be tide locked, including extremely hot close-orbit planets around Sunlike stars and habitable zone (and hotter) planets around lower-mass stars. The circulations are discussed in terms of fluid dynamical concepts arising from study of the Earth's tropics, supplemented by general circulation model simulations. Even in the relatively simple context of dry (noncondensing) dynamics, there are a number of important unresolved issues that require further study.


2019 ◽  
pp. 55-60
Author(s):  
Diana Kjurkchieva ◽  
Nikola Petrov ◽  
Sunay Ibryamov

We present photometric observations of the newly-discovered transiting exoplanets HAT-P-54b and WASP-153b with the Rozhen 2 m telescope. As a result we improved their periods. The modeling of the new transits led to almost identical values of orbital inclinations and stellar radii to the first published values while the planet radii were slightly different: that of HAT-P-54b was bigger and that of WASP-153b was smaller. The more bloated nature of WASP-153b is a result of its considerable close orbit and high stellar temperature. Our calculation of the WASP-153 distance is very close to that measured by GAIA. The best fits of the newly-observed transits of HAT-P-54b and WASP-153b correspond to the quadratic limb-darkening law of their host stars whose coefficients were determined. Our results confirmed the hot Jupiter nature of the two targets.


2018 ◽  
Vol 612 ◽  
pp. A108 ◽  
Author(s):  
A.-M. Lagrange ◽  
M. Keppler ◽  
N. Meunier ◽  
J. Lannier ◽  
H. Beust ◽  
...  

Context. The search for extrasolar planets has been limited so far to close orbit (typ. ≤5 au) planets around mature solar-type stars on the one hand, and to planets on wide orbits (≥10 au) around young stars on the other hand. To get a better view of the full giant planet population, we have started a survey to search for giant planets around a sample of carefully selected young stars. Aims. This paper aims at exploring the giant planet population around one of our targets, β Pictoris, over a wide range of separations. With a disk and a planet already known, the β Pictoris system is indeed a very precious system for studies of planetary formation and evolution, as well as of planet–disk interactions. Methods. We analyse more than 2000 HARPS high-resolution spectra taken over 13 years as well as NaCo images recorded between 2003 and 2016. We combine these data to compute the detection probabilities of planets throughout the disk, from a fraction of au to a few dozen au. Results. We exclude the presence of planets more massive than 3 MJup closer than 1 au and further than 10 au, with a 90% probability. 15+ MJup companions are excluded throughout the disk except between 3 and 5 au with a 90% probability. In this region, we exclude companions with masses larger than 18 (resp. 30) MJup with probabilities of 60 (resp. 90) %.


Sign in / Sign up

Export Citation Format

Share Document