Surface photovoltage spectroscopy in a Kelvin probe force microscope under ultrahigh vacuum

2009 ◽  
Vol 80 (1) ◽  
pp. 013907 ◽  
Author(s):  
F. Streicher ◽  
S. Sadewasser ◽  
M. Ch. Lux-Steiner
MRS Advances ◽  
2017 ◽  
Vol 2 (21-22) ◽  
pp. 1195-1201 ◽  
Author(s):  
Susanna E. Challinger ◽  
Iain D. Baikie ◽  
Jonathon R. Harwell ◽  
Graham A. Turnbull ◽  
Ifor D.W. Samuel

ABSTRACTWe present a study of the energy levels in a FTO/TiO2/CH3NH3PbI3/Spiro solar cell device. The measurements are performed using a novel ambient pressure photoemission (APS) technique alongside Contact Potential Difference data from a Kelvin Probe. The Perovskite Solar Cell energy band diagram is demonstrated for the device in dark conditions and under illumination from a 150W Quartz Tungsten Halogen lamp. This approach provides useful information on the interaction between the different materials in this solar cell device. Additionally, non-destructive macroscopic DC and AC Surface Photovoltage Spectroscopy (SPS) studies are demonstrated of different MAPBI3 device structures to give an indication of overall device performance. AC-SPS measurements, previously used on traditional semiconductors to study the mobility, are used in this case to characterise the ability of a perovskite solar cell device to respond rapidly to chopped light. Two different device structures studied showed very different characteristics: Sample A (without TiO2): (ITO/PEDOT:PSS/polyTPD/CH3NH3PbI3/PCBM) had ∼4 times the magnitude of AC-SPS response compared to Sample B (including TiO2): (ITO/TiO2/ CH3NH3PbI3/Spiro). This demonstrates that the carrier speed characteristics of device architecture A is superior to device architecture B. The TiO2 layer has been associated with carrier trapping which is illustrated in this example. However, the DC-SPV performance of sample B is ∼5 times greater than that of sample A. The band gap of the MAPBI3 layer was determined through DC-SPS (1.57 ± 0.07 eV), Voc of the devices measured and qualitative observations made of interface trapping by DC light pulsing. The combination of these (APS, KP, AC/DC-SPV/SPS) techniques offers a more general method for measuring the energy level alignments and performance of Organic and Hybrid Solar Cell Devices.


Vacuum ◽  
2012 ◽  
Vol 86 (12) ◽  
pp. 2158-2161 ◽  
Author(s):  
Yongchang Sang ◽  
Aimin Liu ◽  
Weifeng Liu ◽  
Dawei Kang

Author(s):  
Monika Kwoka ◽  
Michal A. Borysiewicz ◽  
Pawel Tomkiewicz ◽  
Anna Piotrowska ◽  
Jacek Szuber

In this paper a novel type of a highly sensitive gas sensor device based on the surface photovoltage effect is described. The developed surface photovoltage gas sensor is based on a reverse Kelvin probe approach. As the active gas sensing electrode the porous ZnO nanostructured thin films are used deposited by the direct current (DC) reactive magnetron sputtering method exhibiting the nanocoral surface morphology combined with an evident surface nonstoichiometry related to the unintentional surface carbon and water vapor contaminations. Among others, the demonstrated SPV gas sensor device exhibits a high sensitivity of 1 ppm to NO2 with a signal to noise ratio of about 50 and a fast response time of several seconds under the room temperature conditions.


2011 ◽  
Vol 38 (9) ◽  
pp. 0906002
Author(s):  
陈亮 Chen Liang ◽  
钱芸生 Qian Yunsheng ◽  
常本康 Chang Benkang ◽  
张益军 Zhang Yijun

Sign in / Sign up

Export Citation Format

Share Document