High frequency magnetic field imaging by frequency modulated magnetic force microscopy

2010 ◽  
Vol 107 (9) ◽  
pp. 09D309 ◽  
Author(s):  
Hitoshi Saito ◽  
Wei Lu ◽  
Kodai Hatakeyama ◽  
Genta Egawa ◽  
Satoru Yoshimura
Author(s):  
Way-Jam Chen ◽  
Lily Shiau ◽  
Ming-Ching Huang ◽  
Chia-Hsing Chao

Abstract In this study we have investigated the magnetic field associated with a current flowing in a circuit using Magnetic Force Microscopy (MFM). The technique is able to identify the magnetic field associated with a current flow and has potential for failure analysis.


2009 ◽  
Vol 19 (3) ◽  
pp. 674-680 ◽  
Author(s):  
Zhong-tao ZHANG ◽  
Qing-tao GUO ◽  
Feng-yun YU ◽  
Jie LI ◽  
Jian ZHANG ◽  
...  

1992 ◽  
Vol 60 (17) ◽  
pp. 2048-2050 ◽  
Author(s):  
R. Wolfe ◽  
E. M. Gyorgy ◽  
R. A. Lieberman ◽  
V. J. Fratello ◽  
S. J. Licht ◽  
...  

Author(s):  
Metharak Jokpudsa ◽  
Supawat Kotchapradit ◽  
Chanchai Thongsopa ◽  
Thanaset Thosdeekoraphat

High-frequency magnetic field has been developed pervasively. The induction of heat from the magnetic field can help to treat tumor tissue to a certain extent. Normally, treatment by the low-frequency magnetic field needed to be combined with magnetic substances. To assist in the induction of magnetic fields and reduce flux leakage. However, there are studies that have found that high frequencies can cause heat to tumor tissue. In this paper present, a new magnetic application will focus on the analysis of the high-frequency magnetic nickel core with multi-coil. In order to focus the heat energy using a high-frequency magnetic field into the tumor tissue. The magnetic coil was excited by 915 MHz signal and the combination of tissues used are muscle, bone, and tumor. The magnetic power on the heating predicted by the analytical model, the power loss density (2.98e-6 w/m3) was analyzed using the CST microwave studio.


Sign in / Sign up

Export Citation Format

Share Document