Temperature dependence of the zero‐field splitting of Ni2+ in ZnSiF6 ⋅ 6H2O and ZnSiF6 ⋅ 6D2O at low temperatures

1986 ◽  
Vol 84 (8) ◽  
pp. 4142-4145 ◽  
Author(s):  
R. S. Rubins ◽  
Stuart L. Hutton ◽  
John E. Drumheller
2006 ◽  
Vol 61 (5-6) ◽  
pp. 289-292 ◽  
Author(s):  
Hong-Gang Liu ◽  
Xiao-Xuan Wu ◽  
Wen-Chen Zheng ◽  
Lv He

The EPR zero-field splitting D (= b02 ) and its pressure and temperature dependence for trigonal Mn2+ centers in low and room temperature phases in [Zn(H2O)6](BF4)2 :Mn2+ crystal are studied by a high-order perturbation formula based on the dominant spin-orbit coupling mechanism. From the studies, the local trigonal distortion angles, the local angular compressibilities and the local angular thermal expansion coefficients for Mn2+ centers in both phases of the [Zn(H2O)6](BF4)2 crystal are estimated. The results are discussed


1989 ◽  
Vol 163 ◽  
Author(s):  
P. Emanuelsson ◽  
W. Gehlhoff ◽  
P. Omling ◽  
H. G. Grimmeiss

AbstractThree different Electron Paramagnetic Resonance (EPR) signals, one trigonal and two orthorhombic, which originates from iron-indium pairs in silicon are investigated. It is shown that the two orthorhombic spectra can be explained as transitions within the two doublets of a S=3/2 system with a large zero-field splitting. The temperature dependence of-the intensities reveals that the newly discovered spectrum corresponds to the lower doublet and that the zero-field splitting is 9.8 ± 2.0 cm-1.


Sign in / Sign up

Export Citation Format

Share Document