Large scale peculiar velocities from clusters of galaxies: Is the universe tilted?

2012 ◽  
Author(s):  
F. Atrio-Barandela ◽  
A. Kashlinsky ◽  
H. Ebeling ◽  
D. Kocevski ◽  
A. Edge
1987 ◽  
Vol 124 ◽  
pp. 335-348
Author(s):  
Neta A. Bahcall

The evidence for the existence of very large scale structures, ∼ 100h−1Mpc in size, as derived from the spatial distribution of clusters of galaxies is summarized. Detection of a ∼ 2000 kms−1 elongation in the redshift direction in the distribution of the clusters is also described. Possible causes of the effect are peculiar velocities of clusters on scales of 10–100h−1Mpc and geometrical elongation of superclusters. If the effect is entirely due to the peculiar velocities of clusters, then superclusters have masses of order 1016.5M⊙ and may contain a larger amount of dark matter than previously anticipated.


1996 ◽  
Vol 168 ◽  
pp. 175-182 ◽  
Author(s):  
D.S. Mathewson ◽  
V.L. Ford

Peculiar velocity measurements of 2500 southern spiral galaxies show large-scale flows in the direction of the Hydra-Centaurus clusters which fully participate in the flow themselves. The flow is not uniform over this region and seems to be associated with the denser regions which participate in the flow of amplitude about 400km/s. In the less dense regions the flow is small or non-existent. This makes the flow quite asymmetric and inconsistent with that expected from large-scale, parallel streaming flow that includes all galaxies out to 6000km/s as previously thought. The flow cannot be modelled by a Great Attractor at 4300km/s or the Centaurus clusters at 3500km/s. Indeed, from the density maps derived from the redshift surveys of “optical” and IRAS galaxies, it is difficult to see how the mass concentrations can be responsible particularly as they themselves participate in the flow. These results bring into question the generally accepted reason for the peculiar velocities of galaxies that they arise solely as a consequence of infall into the dense regions of the universe. To the N. of the Great Attractor region, the flow increases and shows no sign of diminishing out to the redshift limit of 8000km/s in this direction. We may have detected flow in the nearest section of the Great Wall.


1977 ◽  
Vol 3 (2) ◽  
pp. 140-142 ◽  
Author(s):  
B. M. Lewis

Rich clusters of galaxies are a common feature of the large-scale structure of the Universe. Those studied so far, show striking regularities with (a)a smooth radial gradient of number density.(b)’isothermal’ distributions, which according to Bahcall (1975) have a scatter of only ±15% in the size of their characteristic core radii.(c)their limiting structural diameters are ~50 Mpc (cf. Abell, 1975), if they are identified with superclusters.(d)the magnitude of the velocity dispersion about their centres is generally 600-1000 km s-1, and the velocities are cpnsistent with a gaussian distribution (Yahil and Vidal, 1976; also Faber and Dressier, 1976).(e)The extreme velocities are generally within ±3000 km s-1, and for Coma are ∼2400 km s-1 (Tifft and Gregory, 1976).(f)elliptical galaxies tend to predominate near the centre, spirals in the surrounding loose groups.


1983 ◽  
Vol 104 ◽  
pp. 175-175
Author(s):  
J. Bean ◽  
G. Efstathiou ◽  
R. S. Ellis ◽  
B. A. Peterson ◽  
T. Shanks ◽  
...  

The aim of the survey is to sample a relatively large, randomly chosen volume of the Universe in order to study the large-scale distribution of galaxies using the two-point correlation function, the peculiar velocities between galaxy pairs and to provide an estimate of the galaxian luminosity function that is unaffected by density inhomogeneities and Virgo infall.


1980 ◽  
Vol 5 ◽  
pp. 699-714 ◽  
Author(s):  
Neta A. Bahcall

AbstractClusters and groups of galaxies contain the majority of galaxies in the universe. The rich clusters, while less numerous than the many poor groups, are the densest and largest systems known, and can be easily recognized and studied even at relatively large distances. Their study is important for understanding the formation and evolution of clusters and galaxies, and for a determination of the large-scale structure in the universe.


1995 ◽  
Vol 441 ◽  
pp. 449 ◽  
Author(s):  
Mirt Gramann ◽  
Neta A. Bahcall ◽  
Renyue Cen ◽  
J. Richard Gott

2009 ◽  
Vol 691 (2) ◽  
pp. 1479-1493 ◽  
Author(s):  
A. Kashlinsky ◽  
F. Atrio-Barandela ◽  
D. Kocevski ◽  
H. Ebeling

2008 ◽  
Vol 4 (T27A) ◽  
pp. 283-285
Author(s):  
Sadanori Okamura ◽  
Elaine Sadler ◽  
Francesco Bertola ◽  
Mark Birkinshaw ◽  
Françoise Combes ◽  
...  

Division VIII provides a focus for astronomers studying a wide range of problems related to galaxies and cosmology. Objects of the study include individual galaxies, groups and clusters of galaxies, large scale structure, comic microwave background radiation and the universe itself. Approaches are diverse from observational one to theoretical one including computer simulations.


Sign in / Sign up

Export Citation Format

Share Document