Numerical simulation of carbon arc discharge for nanoparticle synthesis

2012 ◽  
Vol 19 (7) ◽  
pp. 073510 ◽  
Author(s):  
M. Kundrapu ◽  
M. Keidar
Author(s):  
Kai Ye ◽  
Da Zhang ◽  
Kaiwen Zhang ◽  
Haoyu Wang ◽  
Feng Liang ◽  
...  

Author(s):  
K. Saidane ◽  
H. Lange ◽  
M. Razafinimanana ◽  
A. Huczko ◽  
C. Zedde ◽  
...  
Keyword(s):  

1994 ◽  
Vol 359 ◽  
Author(s):  
C. J. Brabec ◽  
A. Maiti ◽  
C. Roland ◽  
J. Bernholc

ABSTRACTIt has been shown experimentally that the growth of carbon nanotubes in an arc discharge is open-ended. This is surprising, because dangling bonds at the end of open tubes make the closed tube geometry more favorable energetically. Recently, it has been proposed that the large electric fields present at the tip of tube is the critical factor that keeps the tube open. We have studied the effects of the electric field on the growth of the nanotubes via ab initio molecular dynamics simulations. Surprisingly, it is found that the electric field cannot play a significant role in keeping the tubes open, implying that some other mechanism must be important. Extensive studies of the energetics and simulations of the growth of tubes were performed using a threebody Tersoff-Brenner potential. Our results show that there exists a critical diameter of ∼ 3 nm above which a defect-free growth of a straight tubule is possible. Narrower tubes stabilize configurations with adjacent pentagons that lead to tube-closure and termination of the growth. This explains the absence of tube narrower than 2.2 nm in arc discharge experiments.


2020 ◽  
Vol 24 (Suppl. 1) ◽  
pp. 31-37
Author(s):  
Shu Zhang ◽  
Wei Wang ◽  
Hong Sun ◽  
Dumitru Baleanu

This paper provided a numerical simulation of fluid dynamics in the chemical vapor reactor for nanoparticle synthesis. Standard k-? turbulence equation and eddy-dissipation model with standard wall function were used to investigate the reaction process of turbulent diffusion for alumina production. Here the tempera?ture and the operating conditions are discussed. Numerical results show that the model can well describe synthesis of nanometer alumina. The chemical reactions for alumina by this reactor are mainly concentrated in the range of 200 mm after the nozzle. The materials are completely mixed after 400 mm in the reactor.


2018 ◽  
Vol 1128 ◽  
pp. 012119
Author(s):  
A V Fedoseev ◽  
N A Demin ◽  
S Z Sakhapov ◽  
A V Zaikovskii ◽  
D V Smovzh

Sign in / Sign up

Export Citation Format

Share Document