alumina production
Recently Published Documents


TOTAL DOCUMENTS

222
(FIVE YEARS 83)

H-INDEX

12
(FIVE YEARS 4)

2021 ◽  
Vol 5 (1) ◽  
pp. 85
Author(s):  
Aikaterini Toli ◽  
Georgia Maria Tsaousi ◽  
Efthymios Balomenos ◽  
Dimitrios Panias ◽  
Matthias Heuer ◽  
...  

Calcium aluminate slag produced by the aluminothermic reduction of silica is tested as a candidate raw material for the hydrometallurgical production of pure aluminium chloride hexahydrate (ACH) through leaching with hydrochloric acid. The crystallization of ACH follows by sparging the pregnant liquor with hydrochloric gas. Almost total extraction of Al is achieved with the use of azeotropic HCl acid solution (5.9 M) at 80 °C and 1 h retention time. A pregnant liquor with approximately 20 wt% AlCl3 is produced as a base for ACH crystallization by sparging it with gaseous HCl. The ACH produced is re-dissolved and crystallized three to four times until high purity is achieved. High purity ACH acts as a precursor for producing High Purity Alumina (HPA), a high added value material used in LEDs and lithium-ion batteries and other niche applications.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7899
Author(s):  
Aleksandr Bakhtin ◽  
Nikolay Lyubomirskiy ◽  
Stanisław Fic ◽  
Tamara Bakhtina

Alternative binders activated by forced carbonisation are regarded as one of the potential solutions to reducing greenhouse gas emissions, water, and energy consumption. Such binders, in particular those based on nepheline sludge (a by-product of alumina production), cured in carbon dioxide with subsequent hydration, are clinkerless building materials. The development of such binders contributes to the involvement of multi-tonnage solid industrial waste in the production cycle. This type of waste is capable of binding man-made CO2 and transforming it into stable insoluble compounds, having binder properties. The optimum technological parameters of the forced carbonisation of the nepheline slime binder was determined by the mathematical planning of the experiment. The novelty of the research is the expansion of the secondary raw material base that can bind the man-made CO2 with obtaining the construction products of appropriate quality. It was revealed that the process of active CO2 absorption by the minerals of nepheline slime is observed in the first 120 min of the forced carbonization. Immediately after carbonisation, the resulting material develops compressive strength up to 57.64 MPa, and at the subsequent hydration within 28 days this figure increases to 68.71 MPa. Calcium carbonate is the main binder that determines the high mechanical properties of the samples. During the subsequent hydration of the uncoated belite, gel-like products are formed, which additionally harden the carbonised matrix. Thus, after the forced carbonisation and the following 28 days of hardening, the material with compressive strength in the range 4.38–68.71 MPa and flexural strength of 3.1–8.9 MPa was obtained. This material was characterised by water absorption by mass in the range of 13.9–23.3% and the average density of 1640–1886 kg/m3. The softening coefficient of the material was 0.51–0.99. The results obtained enables one to consider further prospects for research in this area, in terms of the introduction of additional technological parameters to study the process of forced carbonisation of nepheline slime.


2021 ◽  
Vol 5 (1) ◽  
pp. 66
Author(s):  
Panagiotis Angelopoulos ◽  
Maria Georgiou ◽  
Paschalis Oustadakis ◽  
Maria Taxiarchou ◽  
Hakan Karadağ ◽  
...  

Bauxite Metallurgical Residue (BR) is a highly alkaline and very fine-grained by-product of the Bayer process for alumina production. Its huge global annual production has resulted in increasing accumulation of BR, causing deposition problems and serious environmental issues. RM contains oxides and salts of the main elements Fe, Al, Ca, Na, Si, Ti, and rare earths—REEs (Sc, Nd, Y, La, Ce, Ds)—many of which have been categorised by EU as critical metals (CMs). The valorisation of BR as a low-cost secondary raw material and metal resource could be a route for its reduction, introducing the waste into the economic cycle. REEScue constitutes a research project that aims to instigate the efficient exploitation of European bauxite residues, resulting from alumina production from Greece (MYTILINEOS SA), Turkey (ETI Aluminium), and Romania (ALUM SA), containing appreciable concentrations of scandium and REEs, through the development of a number of innovative extraction and separation technologies that can efficiently address the drawbacks of the existing solution. The consortium consists of three alumina producers from Greece (MYTILINEOS SA), Turkey (ETI Aluminium), and Romania (ALUM SA) and two academic partners from Greece (National Technical University of Athens) and Turkey (Necmettin Erbacan University). We present preliminary characterization results of three different BR samples that originate from the three aluminium industries, in respect of bulk chemical analysis (XRF, ICP), mineralogical investigation (XRD), and morphological observation through microscopy.


2021 ◽  
Vol 5 (1) ◽  
pp. 58
Author(s):  
Sevasti Koutsoupa ◽  
Stavroula Koutalidi ◽  
Efthymios Balomenos ◽  
Dimitrios Panias

Iron and steel production contributes to ~10% of global CO2 emissions. In recent decades, different scenarios and low-emission pathways have been taken up by steelmaking industries with the collaboration of universities and research institutes to tackle this problem. One of the most promising novel methods to replace the current steelmaking process is the low-temperature electrolysis of iron oxide. This technology is currently being developed under the H2020 ΣIDERWIN project, a European project led by ArcelorMittal, the world’s leading steel and mining company. The ΣIDERWIN project aims at developing an innovative electrochemical process to transform iron oxide into steel metal plates. This process produces steel by electrolysis without direct CO2 emissions. In this operation, electrical energy and iron oxide are converted into chemical energy consisting of separated iron metal from the oxygen gas. It is a disruptive innovation that entirely shifts the way steel is presently produced. One of the advantages of this process is the fact that, in addition to iron oxide (hematite), it is possible to feed this process with other iron-containing raw materials. An alternative raw material which is being studied to be used in this process is bauxite residue (BR), the waste material from the Bayer process for alumina production. The iron oxide of the conversion of bauxite residue to metallic iron is under investigation, and insights are showing that it could follow up the electrochemical route for sustainable iron production. This research deals with the effect of the current density and temperature on current efficiency comparing two different raw materials, pure iron oxide–hematite and bauxite residue.


2021 ◽  
Vol 5 (1) ◽  
pp. 55
Author(s):  
Olga Chernoburova ◽  
Alexandre Chagnes

With growing demand for renewable and clean energy technologies, the need in rare earth metals is increasing. Scandium, which is often considered a rare earth element (REE), is a critical metal mainly used in solid oxide fuel cells (SOFCs) and high strength aluminum alloys used in aerospace and 3D printing applications. Furthermore, scandium supply is limited due to its scarcity and the high cost of its production in Asia and Russia while Europe has no production of scandium. Therefore, scandium extraction from alternative resources such as secondary resources located in Europe is of great concern. Within this context, this work provides a condensed state-of-art review of the issue of scandium recovery from industrial wastes. Priority was given to addressing the technological and economic challenges associated with the recovery of scandium from the said residues, with particular emphasis on the bauxite residue from alumina production, which represents nearly 5 million tons on dry basis per year in Europe.


2021 ◽  
Vol 5 (1) ◽  
pp. 53
Author(s):  
Andriani Manataki ◽  
James M. Mwase ◽  
Casper van der Eijk

The Pedersen process is an alumina production process, which combines pyrometallurgical and hydrometallurgical methods. In the pyrometallurgical stage, limestone is calcined and CO2 is generated. This off-gas can be captured with a high CO2 concentration. At the end of the hydrometallurgical process, aluminum hydroxides, like bayerite, are precipitated using CO2. In this paper, experimental work on precipitation of aluminum hydroxides through the addition of a mixture of CO2, O2 and N2 is presented. The parameters varied, as were the percentages of each gas and the temperature. The indicators measured were the time until the beginning of precipitation and the time that the precipitation lasts. These tests simulate the use of a smelter furnace off-gas in the precipitation stage of the Pedersen process and have shown promising results.


2021 ◽  
Vol 5 (1) ◽  
pp. 45
Author(s):  
Stergi Kapelari ◽  
Platon N. Gamaletsos ◽  
Tom Van Der Donck ◽  
Yiannis Pontikes ◽  
Bart Blanpain

To tackle the challenge of bauxite residue (BR), generated during the alumina production, as well as to recover some of its metal content, three combinatory H2-based processes were utilized. Firstly, Greek BR was mixed with NaOH to produce water soluble Na-aluminates and was roasted under pure H2 gas in order to reduce the Fe+3 content. Then the first process combined water leaching and magnetic separation, the second water leaching and melting and the last included wet magnetic separation. The water media resulted in the dissolution of Na-aluminate phases and the production of Al, Na-ion rich leachates. From these, pregnant leaching solutions recovery of Al was 78%, 84% and for the third case it reached 91%. Concerning Na recovery, it could reach 94%. Both melting process and magnetic separation aimed for Fe recovery from the material. The former case however still needs to be optimized, here its concept is introduced. The magnetic fraction, after the dry magnetic separation, varied in Fe content from 31.57 wt.% to 38.50 wt.%, while after the wet magnetic separation it reached 31.85 wt.%.


2021 ◽  
Vol 5 (1) ◽  
pp. 24
Author(s):  
Bagani Maria ◽  
Balomenos Efthymios ◽  
Panias Dimitrios

The extensive consumption of aluminum, combined with the shortage of the existing raw materials, and particularly bauxite, necessitates the exploitation of alternative raw materials for the production of alumina. The present paper focuses on the possible use of kaolin, as an abundant, cheap and high-aluminum content raw material, in alumina production, via the application of the Aranda-Mastin technology in the leaching step. From this point of view, leaching experiments were conducted on untreated kaolin and thermally treated, metakaolin, applying atmospheric pressure, temperature of 90 °C and with an aqueous solution of a low HCl concentration as the leaching agent. Leaching, in the aforementioned conditions, is an industrially applied process, characterized by highly efficient aluminum dissolution in the case of metakaolin with low silicon dissolution at a short retention time, but with respectively lower achieved results for untreated kaolin. In order to raise the aluminum dissolution rate from untreated material, temporal and subsequently chemical intensification was applied. The analysis indicated a higher aluminum dissolution rate, up to 70%, with the application of a high acid concentration of leaching agent, performed for a long retention time that could be further improved.


2021 ◽  
Vol 173 ◽  
pp. 107234
Author(s):  
Zhanwei Liu ◽  
Hengwei Yan ◽  
Wenhui Ma ◽  
Baoqiang Xu ◽  
Ping Xiong

Fuel ◽  
2021 ◽  
pp. 122478
Author(s):  
Da Li ◽  
Kaixi Jiang ◽  
Xunxiong Jiang ◽  
Feng Zhao ◽  
Shengdong Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document