scholarly journals Fabrication of Bi2Te3 nanowire arrays and thermal conductivity measurement by 3ω-scanning thermal microscopy

2013 ◽  
Vol 113 (5) ◽  
pp. 054308 ◽  
Author(s):  
M. Muñoz Rojo ◽  
S. Grauby ◽  
J.-M. Rampnoux ◽  
O. Caballero-Calero ◽  
M. Martin-Gonzalez ◽  
...  
2013 ◽  
Vol 117 (17) ◽  
pp. 9025-9034 ◽  
Author(s):  
Stéphane Grauby ◽  
Etienne Puyoo ◽  
Jean-Michel Rampnoux ◽  
Emmanuelle Rouvière ◽  
Stefan Dilhaire

Author(s):  
Yun Zhang ◽  
Wenkai Zhu ◽  
Theodorian Borca-Tasciuc

Abstract Thermoresistive probes are increasingly popular in thermal conductivity characterization using Scanning Thermal Microscopy (SThM). A systematic analysis of the thermal conductivity measurement performance (sensitivity and spatial resolution) of thermoresistive SThM probe configurations that are available commercially is of interest to practitioners. In this work, the authors developed and validated 3-Dimensional Finite Element Models (3DFEM) of non-contact SThM with self-heated thermoresistive probes under ambient conditions with the probe-sample heat transfer in transition heat conduction regime for the four types of SThM probe configurations resembling commercially available products: Wollaston wire (WW) type probe, Kelvin Nanotechnology (KNT) type probe, Doped Silicon (DS) type probe, and Nanowire (NW) type probe. These models were then used to investigate the sensitivity and spatial resolution of the WW, KNT, DS and NW type probes for thermal conductivity measurements in non-contact mode in ambient conditions. The comparison of the SThM probes performance for measuring sample thermal conductivity and for the specific operating conditions investigated here show that the NW type probe has the best spatial resolution while the DS type probe has the best thermal conductivity measurement sensitivity in the range between 2-10 W·m−1·K−1. The spatial resolution is negatively affected by large probe diameters or by the presence of the cantilever in close proximity to the sample surface which strongly affects the probe-sample heat transfer in ambient conditions. An example of probe geometry configuration optimization was illustrated for the WW probe by investigating the effect of probe wire diameter on the thermal conductivity measurement sensitivity, showing ∼20% improvement in spatial resolution at the diameter with maximum thermal conductivity measurement sensitivity.


2018 ◽  
Vol 135 (5) ◽  
pp. 2831-2836 ◽  
Author(s):  
Tetsuya Nomoto ◽  
Shusaku Imajo ◽  
Satoshi Yamashita ◽  
Hiroki Akutsu ◽  
Yasuhiro Nakazawa ◽  
...  

Holzforschung ◽  
2008 ◽  
Vol 62 (1) ◽  
pp. 91-98 ◽  
Author(s):  
Johannes Konnerth ◽  
David Harper ◽  
Seung-Hwan Lee ◽  
Timothy G. Rials ◽  
Wolfgang Gindl

Abstract Cross sections of wood adhesive bonds were studied by scanning thermal microscopy (SThM) with the aim of scrutinizing the distribution of adhesive in the bond line region. The distribution of thermal conductivity, as well as temperature in the bond line area, was measured on the surface by means of a nanofabricated thermal probe offering high spatial and thermal resolution. Both the thermal conductivity and the surface temperature measurements were found suitable to differentiate between materials in the bond region, i.e., adhesive, cell walls and embedding epoxy. Of the two SThM modes available, the surface temperature mode provided images with superior optical contrast. The results clearly demonstrate that the polyurethane adhesive did not cause changes of thermal properties in wood cell walls with adhesive contact. By contrast, cell walls adjacent to a phenol-resorcinol-formaldehyde adhesive showed distinctly changed thermal properties, which is attributed to the presence of adhesive in the wood cell wall.


Sign in / Sign up

Export Citation Format

Share Document