wire method
Recently Published Documents


TOTAL DOCUMENTS

444
(FIVE YEARS 51)

H-INDEX

29
(FIVE YEARS 2)

2022 ◽  
Vol 1049 ◽  
pp. 31-38
Author(s):  
Anastasiya Gusarova ◽  
Andrey Chumaevskii ◽  
Denis Gurianov ◽  
Tatiana Kalashnikova ◽  
Anna P. Zykova ◽  
...  

The structure and mechanical properties of gradient transition zones of the copper-nickel system formed by additive electron beam technology have been investigated. Pure copper and nickel alloy Ni80Cr20 were used for printing. The data obtained testify to the complex and heterogeneous nature of structure formation when printing both by single-wire method and using double-wire controlled feeding of material into the melt bath. In the samples, the formation of defects of different scale from local inhomogeneities of the structure to pores and cracks is possible. The mechanical properties of the structural gradient zone are at a sufficiently high level and depend on the ratio of the system components.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7874
Author(s):  
Yoshifumi Jodai ◽  
Yutaka Hara

This study aimed to determine the optimal rotor spacing of two vertical-axis wind turbines, which are simulated by miniature models arranged side-by-side with a relatively low aspect ratio. Wind tunnel experiments with a pair of 3-D printed model rotors were conducted at a uniform velocity. A series of experiments were conducted involving both incremental adjustments to the rotor gaps, g, and the rotational direction of each rotor. Increases in the power and the related flow patterns were observed in all three arrangements: Co-Rotating (CO), Counter-Up (CU), and Counter-Down (CD). The maximum phase-synchronized rotational speed occurs at the narrowest gap in the CD arrangement. Meanwhile, local maxima arise in the CO and CU arrangements at g/D < 1, where D is the rotor diameter. From an engineering perspective, the optimal rotor spacing is g/D = 0.2 with the CO arrangement, using the same two rotors rotating in the same direction. Based on flow visualization using a smoke-wire method at a narrower gap opening of 0.2D, the wake width in the case of the CU arrangement was remarkably narrower than those obtained in the CO and CD arrangements. In the CU arrangement, a movement towards the center of the rotor pair of the nominal front-stagnation point of each rotor was confirmed via flow visualization. This finding explains a reduction tendency in the rotational speed of the rotors via a reduction in the lift in the CU arrangement.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7746
Author(s):  
Tomasz Rybicki ◽  
Zbigniew Stempien ◽  
Iwona Karbownik

The paper presents the results and analysis of interdisciplinary research concerning electromagnetic field shielding, conductive polymers printed on textiles and numerical simulation using the finite element method (FEM). The use of conductive, layered textiles for shielding electromagnetic interference (EMI) has been proposed. After establishing the optimal conditions for deposition of polyaniline (PANI) and polypyrrole (PPy) on polyacrylonitrile (PAN) fabric, conductive composites were made by means of reactive inkjet printing. For this purpose, polyacrylonitrile (PAN) fabrics were coated with polyaniline or polypyrrole, obtained by chemical oxidation of aniline hydrochloride and pyrrole by ammonium peroxydisulfate. The morphology of the obtained coatings was observed using a scanning electron microscope (SEM). The conductive properties (surface resistance) of the fabrics were measured using the four-wire method, and the tests of the effectiveness of electromagnetic shielding were carried out using the waveguide method in the frequency range from 2.5 to 18 GHz. The results of experimental shielding effectiveness (SE) tests and numerical simulation showed that the composites of polyacrylonitrile with polyaniline PAN/PANI and polyacrylonitrile with polypyrrole PAN/PPy achieved very good and good EMI shielding efficiency, respectively. Moreover, the obtained measurement results were verified by numerical modeling with the use of FEM–ANSYS HFFS software.


2021 ◽  
Vol 28 (4) ◽  
pp. 37-49
Author(s):  
Madgeed A. Al-Doury ◽  
Atif Ali Hasan ◽  
Raheem Kadhim Mohammed ◽  
Riyadh H. Al-Jawad

Thermophysical Properties of Building Materials are Considered to have high importance in predicting building thermal performance, calculating thermal loads inside building, and optimizing the use of a building and insulating materials. Due to the lack of measurements of local building materials properties, designers and air- conditioning engineers have no choice but to use the published foreign data, which probably leads to inaccurate predictions of thermal loads and may give a false thermal performance. At the same time, it leads to an over-designed capacity of air- conditioning systems that lead to increased energy consumption in the building. Thus, it is clear that it was important to conduct this research to evaluate the thermal conductivity and thermal resistance of Iraqi building materials. The number of the local building materials were listed, and specimens were collected from their sites, factories, and suppliers such as bricks, stones, concrete products, gypsum, etc. Those samples were dimensioned to the specific size required when a measurement was conducted by the Hot Wire method. All measurements were carried out at room temperature. The relationship between thermal conductivity, density, moisture content, and pressure for a number of materials was Studied. A comparison between the measurements of the Iraqi building materials and results published in the ASHRAE, CIBS Guide, Australian Specifications, and Jordanian Specifications was made. However, the availability of such data is important for the climatic design of buildings, thermal load calculations for air- conditioning, and choosing the insulating materials.


2021 ◽  
Vol 2116 (1) ◽  
pp. 012040
Author(s):  
Jasper Nonneman ◽  
Kenny Couvreur ◽  
Andrey Vancoillie ◽  
Michel De Paepe

Abstract An experimental setup is built to determine the thermal conductivity of a mixture of KNO3 and NaNO3 with a ratio of 54-46m% which is used in high temperature thermal storage systems. The measurement principle is based on the transient parallel hot-wire method which is described in the standards NBN B 62-202 and ISO 8892-2. The setup is designed to measure the thermal conductivity around the melting temperature (<300°C). Measurements within the liquid region show faulty results caused by natural convection within the sample. The measured thermal conductivity within the solid region is 0.5466-0.5529W/mK close to the melting point and 0.7174W/mK at room temperature, which shows a decreasing thermal conductivity with increasing temperature in the solid region.


2021 ◽  
Vol 324 ◽  
pp. 133-138
Author(s):  
Jia Zhen Wang ◽  
Jing Du ◽  
Yun Bo Wang

Silica aerogels are the most widely studied type of aerogel. However, its application still suffers from low mechanical strength and high production cost. The paper studies the use of recyclable PVC as the backbone material of the aerogel and introduces an economically friendly fabrication process of flexible PVC aerogel using sol-gel technique and ambient drying instead of the CO2 critical drying. Three different types of PVC powder with the molecule weight of 43000, 48000, and 80000 respectively are chosen and dissolved in DMF in five different concentrations-0.2, 0.4, 0.6, 0.8, and 1.0 g (mL)-1. The lowest thermal conductivity of the aerogel is measured using hot-wire method as 0.0323W(m*K)-1, which is made of PVC with molecule weight of 80000 in a concentration of 0.4g (mL)-1. The analysis based on SEM pictures shows that PVC type and concentration would greatly influence aerogel’s structure thus affecting its thermal conductivity. The optimal solution for producing low thermal conductivity aerogel is to use PVC powder with low molecule weight with a concentration between 0.2 and 0.6 g (mL)-1.


2021 ◽  
Vol 71 (344) ◽  
pp. e260
Author(s):  
D. Revuelta ◽  
J.L. García-Calvo ◽  
P. Carballosa ◽  
F. Pedrosa

The determination of thermal conductivity of cement-based materials is relevant from the perspective of buildings’ energy efficiency. The absence of unified tests for its measurement in mortars and concrete results in a heterogeneity of the data available in the literature. This work’s purpose is to determine the relevant influence from a a statistical viewpoint that three factors; degree of saturation, measuring time and use of a conductive paste, have in the measurement of the conductivity using the hot-wire needle probe method in two concretes with different thermal behavior: standard-weight concrete and lightweight concrete. The results obtained allow for the establishment of recommendations for future researchers on the minimum information to be included in their reports of thermal conductivity of cement-based materials by the needle probe method, the need to treat outliers, the most favorable saturation conditions and measuring times, as well as the possible benefits of using conductive pastes.


Sign in / Sign up

Export Citation Format

Share Document