Incident shock Mach number effects on Richtmyer-Meshkov mixing in a heavy gas layer

2013 ◽  
Vol 25 (11) ◽  
pp. 114101 ◽  
Author(s):  
G. C. Orlicz ◽  
S. Balasubramanian ◽  
K. P. Prestridge
2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Anugya Singh ◽  
Aravind Satheesh Kumar ◽  
Kannan B.T.

Purpose The purpose of this study is to experimentally investigate the trends in shock wave Mach number that were observed when different diaphragm material combinations were used in the small-scale shock tube. Design/methodology/approach A small-scale shock tube was designed and fabricated having a maximum Mach number production capacity to be 1.5 (theoretically). Two microphones attached in the driven section were used to calculate the shock wave Mach number. Preliminary tests were conducted on several materials to obtain the respective bursting pressures to decide the final set of materials along with the layered combinations. Findings According to the results obtained, 95 GSM tracing paper was seen to be the strongest reinforcing material, followed by 75 GSM royal executive bond paper and regular 70 GSM paper for aluminium foil diaphragms. The quadrupled layered diaphragms revealed a variation in shock Mach number based on the position of the reinforcing material. In quintuple layered combinations, the accuracy of obtaining a specific Mach number was seen to be increasing. Optimization of the combinations based on the production of the shock wave Mach number was carried out. Research limitations/implications The shock tube was designed taking maximum incident shock Mach number as 1.5, the experiments conducted were found to achieve a maximum Mach number of 1.437. Thus, an extension to further experiments was avoided considering the factor of safety. Originality/value The paper presents a detailed study on the effect of change in the material and its position in the layered diaphragm combinations, which could lead to variation in Mach numbers that are produced. This could be used to obtain a specific Mach number for a required study accurately, with a low-cost setup.


2001 ◽  
Vol 17 (1) ◽  
pp. 1-12
Author(s):  
J. J. Liu

ABSTRACTStrong pseudo-steady Mach reflections in sulfur hexafluoride (SF6) are analyzed using the three-shock and local three-shock theories, where both the vibrationally-frozen (γ = 1.333) and -equilibrated (γ = 1.093) perfect-gas models are used to compare with existing experiments. The ranges of the incident shock Mach number and reflecting wedge angle studied are 1.49 ≤ Ms ≤ 5.95 and 10° ≤ θω ≤ 42°, respectively. It is found that predicted angles between the incident and reflected shocks from the local three-shock theory using the vibrationally-equilibrated fictitious perfect-gas model (i.e., γ = 1.093) agree closely with those, currently available in literature, measured experimentally; while these predicted angles obtained using the vibrationally-frozen perfect-gas model (i.e., γ = 1.333) differ significantly from the existing experiments. Taking the convex Mach stem curvature at the triple point into consideration, it is shown that both the triple point trajectory angle and the angle between the incident and reflected shocks of strong pseudo-steady Mach reflections in SF6 can be more accurately determined for wide ranges of Ms and θω from the three-shock theory using the vibrationally-equilibrated fictitious perfect-gas model than those without considering this effect.


1967 ◽  
Vol 29 (2) ◽  
pp. 297-304 ◽  
Author(s):  
B. W. Skews

This paper describes an experimental study of the shape of a shock diffracting around a corner made up of two plane walls, for corner angles from 15 to 165° (in 15° steps) and shock Mach numbers from M0 = 1·0 to 4·0. The results are compared with profiles determined from the diffraction theory of Whitham (1957, 1959). The agreement is shown to be good for an incident shock Mach number of 3·0, and fair in other cases. The behaviour is found to follow the trends established by Lighthill (1949) in a linearized theory. Results for the Mach number of the wall shock are also presented. The shock does not degenerate to a sound wave even for large corner angles and low Mach numbers.


Entropy ◽  
2021 ◽  
Vol 23 (8) ◽  
pp. 1051
Author(s):  
Lite Zhang ◽  
Zilong Feng ◽  
Mengyu Sun ◽  
Haozhe Jin ◽  
Honghui Shi

This study is focused on the propagation behavior and attenuation characteristics of a planar incident shock wave when propagating through an array of perforated plates. Based on a density-based coupled explicit algorithm, combined with a third-order MUSCL scheme and the Roe averaged flux difference splitting method, the Navier–Stokes equations and the realizable k-ε turbulence model equations describing the air flow are numerically solved. The evolution of the dynamic wave and ring vortex systems is effectively captured and analyzed. The influence of incident shock Mach number, perforated-plate porosity, and plate number on the propagation and attenuation of the shock wave was studied by using pressure- and entropy-based attenuation rates. The results indicate that the reflection, diffraction, transmission, and interference behaviors of the leading shock wave and the superimposed effects due to the trailing secondary shock wave are the main reasons that cause the intensity of the leading shock wave to experience a complex process consisting of attenuation, local enhancement, attenuation, enhancement, and attenuation. The reflected shock interactions with transmitted shock induced ring vortices and jets lead to the deformation and local intensification of the shock wave. The formation of nearly steady jets following the array of perforated plates is attributed to the generation of an oscillation chamber for the inside dynamic wave system between two perforated plates. The vorticity diffusion, merging and splitting of vortex cores dissipate the wave energy. Furthermore, the leading transmitted shock wave attenuates more significantly whereas the reflected shock wave from the first plate of the array attenuates less significantly as the shock Mach number increases. The increase in the porosity weakens the suppression effects on the leading shock wave while increases the attenuation rate of the reflected shock wave. The first perforated plate in the array plays a major role in the attenuation of the shock wave.


Author(s):  
Savvas S. Xanthos ◽  
Yiannis Andreopoulos

The interaction of traveling expansion waves with grid-generated turbulence was investigated in a large-scale shock tube research facility. The incident shock and the induced flow behind it passed through a rectangular grid, which generated a nearly homogeneous and nearly isotropic turbulent flow. As the shock wave exited the open end of the shock tube, a system of expansion waves was generated which traveled upstream and interacted with the grid-generated turbulence; a type of interaction free from streamline curvature effects, which cause additional effects on turbulence. In this experiment, wall pressure, total pressure and velocity were measured indicating a clear reduction in fluctuations. The incoming flow at Mach number 0.46 was expanded to a flow with Mach number 0.77 by an applied mean shear of 100 s−1. Although the strength of the generated expansion waves was mild, the effect on damping fluctuations on turbulence was clear. A reduction of in the level of total pressure fluctuations by 20 per cent was detected in the present experiments.


2019 ◽  
Vol 491 (4) ◽  
pp. 4783-4801 ◽  
Author(s):  
K J A Goldsmith ◽  
J M Pittard

ABSTRACT Studies of filamentary structures that are prevalent throughout the interstellar medium are of great significance to a number of astrophysical fields. Here, we present 3D hydrodynamic simulations of shock-filament interactions where the equation of state has been softened to become almost isothermal. We investigate the effect of such an isothermal regime on the interaction (where both the shock and filament are isothermal), and we examine how the nature of the interaction changes when the orientation of the filament, the shock Mach number, and the filament density contrast are varied. We find that only sideways-oriented filaments with a density contrast of 102 form a three-rolled structure, dissimilar to the results of a previous study. Moreover, the angle of orientation of the filament plays a large role in the evolution of the filament morphology: the greater the angle of orientation, the longer and less turbulent the wake. Turbulent stripping of filament material leading to fragmentation of the core occurs in most filaments; however, filaments orientated at an angle of 85° to the shock front do not fragment and are longer lived. In addition, values of the drag time are influenced by the filament length, with longer filaments being accelerated faster than shorter ones. Furthermore, filaments in an isothermal regime exhibit faster acceleration than those struck by an adiabatic shock. Finally, we find that the drag and mixing times of the filament increase as the angle of orientation of the filament is increased.


1968 ◽  
Vol 72 (686) ◽  
pp. 155-159
Author(s):  
M. Lalor ◽  
H. Daneshyar

Summary Tables of equilibrium thermodynamic properties of the ionized gas formed behind strong shock waves in Helium are presented, in the Mach number range 10 to 30, for initial pressures of 0-1, 0-5, 1, 5, 10, 50, 100 torr. The effect of the inclusion of the full partition function series is demonstrated in the Mach number range 20 to 30. A numerical solution has been developed such that the only experimental quantities required for its use are the shock Mach number and the pre-shock conditions.


Sign in / Sign up

Export Citation Format

Share Document