scholarly journals The influence of incident shock Mach number on radial incident shock wave focusing

AIP Advances ◽  
2016 ◽  
Vol 6 (4) ◽  
pp. 045110 ◽  
2018 ◽  
Vol 7 (2) ◽  
pp. 120-128 ◽  
Author(s):  
Xin Chen ◽  
Chuan Wang ◽  
Sheng Tan ◽  
Liming He ◽  
Qiang Zhang

2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Anugya Singh ◽  
Aravind Satheesh Kumar ◽  
Kannan B.T.

Purpose The purpose of this study is to experimentally investigate the trends in shock wave Mach number that were observed when different diaphragm material combinations were used in the small-scale shock tube. Design/methodology/approach A small-scale shock tube was designed and fabricated having a maximum Mach number production capacity to be 1.5 (theoretically). Two microphones attached in the driven section were used to calculate the shock wave Mach number. Preliminary tests were conducted on several materials to obtain the respective bursting pressures to decide the final set of materials along with the layered combinations. Findings According to the results obtained, 95 GSM tracing paper was seen to be the strongest reinforcing material, followed by 75 GSM royal executive bond paper and regular 70 GSM paper for aluminium foil diaphragms. The quadrupled layered diaphragms revealed a variation in shock Mach number based on the position of the reinforcing material. In quintuple layered combinations, the accuracy of obtaining a specific Mach number was seen to be increasing. Optimization of the combinations based on the production of the shock wave Mach number was carried out. Research limitations/implications The shock tube was designed taking maximum incident shock Mach number as 1.5, the experiments conducted were found to achieve a maximum Mach number of 1.437. Thus, an extension to further experiments was avoided considering the factor of safety. Originality/value The paper presents a detailed study on the effect of change in the material and its position in the layered diaphragm combinations, which could lead to variation in Mach numbers that are produced. This could be used to obtain a specific Mach number for a required study accurately, with a low-cost setup.


Author(s):  
H-D Kim ◽  
Y-H Kweon ◽  
T Setoguchi ◽  
S Matsuo

When a plane shock wave reflects from a concave wall or when a curved shock wave reflects from a straight wall, it is focused at a certain location, resulting in extremely high local pressure and temperature. This focusing is due to a non-linear phenomenon of a shock wave. This focusing phenomenon has been extensively applied in a variety of engineering and medical areas. In the current study, the focusing phenomenon of a weak shock wave over a reflector is numerically investigated using a computational fluid dynamics (CFD) method. The total variation diminishing (TVD) scheme is used to solve the unsteady, two-dimensional, compressible, Euler equations. The Mach number of the incident shock wave is changed in the range from 1.1 to 1.5. Several different types of reflectors are employed to investigate the effect of the reflector on the focusing phenomenon of the weak shock wave. The focusing characteristics of the shock wave are investigated in terms of peak pressure, gas dynamic and geometrical foci. The results obtained are compared with previous experiment results that are available. The results show that the peak pressure of shock wave focusing and its location strongly depend on the Mach number of the incident shock wave and the reflector geometry. The location of the gas dynamic focus is always shorter than that of the geometrical one. This tendency is more remarkable as the incident shock wave becomes stronger. The present computations predict the experimental results with a very good accuracy.


2021 ◽  
Vol 2057 (1) ◽  
pp. 012085
Author(s):  
O I Vishnyakov ◽  
P A Polivanov ◽  
A A Sidorenko

Abstract The evolution of artificial disturbances in a laminar boundary layer on a flat plate model in the presence of an incident shock wave is considered. The flow is supersonic with the freestream Mach number M = 1.43. The study is carried out by hot-wire anemometry. A dielectric barrier discharge is used to generate disturbances. Data on the distribution in space of the average and non-stationary components of the mass flow are obtained. Disturbances created by the discharge and their evolution along the separation zone are recorded.


1967 ◽  
Vol 29 (2) ◽  
pp. 297-304 ◽  
Author(s):  
B. W. Skews

This paper describes an experimental study of the shape of a shock diffracting around a corner made up of two plane walls, for corner angles from 15 to 165° (in 15° steps) and shock Mach numbers from M0 = 1·0 to 4·0. The results are compared with profiles determined from the diffraction theory of Whitham (1957, 1959). The agreement is shown to be good for an incident shock Mach number of 3·0, and fair in other cases. The behaviour is found to follow the trends established by Lighthill (1949) in a linearized theory. Results for the Mach number of the wall shock are also presented. The shock does not degenerate to a sound wave even for large corner angles and low Mach numbers.


Entropy ◽  
2021 ◽  
Vol 23 (8) ◽  
pp. 1051
Author(s):  
Lite Zhang ◽  
Zilong Feng ◽  
Mengyu Sun ◽  
Haozhe Jin ◽  
Honghui Shi

This study is focused on the propagation behavior and attenuation characteristics of a planar incident shock wave when propagating through an array of perforated plates. Based on a density-based coupled explicit algorithm, combined with a third-order MUSCL scheme and the Roe averaged flux difference splitting method, the Navier–Stokes equations and the realizable k-ε turbulence model equations describing the air flow are numerically solved. The evolution of the dynamic wave and ring vortex systems is effectively captured and analyzed. The influence of incident shock Mach number, perforated-plate porosity, and plate number on the propagation and attenuation of the shock wave was studied by using pressure- and entropy-based attenuation rates. The results indicate that the reflection, diffraction, transmission, and interference behaviors of the leading shock wave and the superimposed effects due to the trailing secondary shock wave are the main reasons that cause the intensity of the leading shock wave to experience a complex process consisting of attenuation, local enhancement, attenuation, enhancement, and attenuation. The reflected shock interactions with transmitted shock induced ring vortices and jets lead to the deformation and local intensification of the shock wave. The formation of nearly steady jets following the array of perforated plates is attributed to the generation of an oscillation chamber for the inside dynamic wave system between two perforated plates. The vorticity diffusion, merging and splitting of vortex cores dissipate the wave energy. Furthermore, the leading transmitted shock wave attenuates more significantly whereas the reflected shock wave from the first plate of the array attenuates less significantly as the shock Mach number increases. The increase in the porosity weakens the suppression effects on the leading shock wave while increases the attenuation rate of the reflected shock wave. The first perforated plate in the array plays a major role in the attenuation of the shock wave.


Shock Waves ◽  
2021 ◽  
Author(s):  
S. Bengoechea ◽  
J. Reiss ◽  
M. Lemke ◽  
J. Sesterhenn

AbstractAn optimisation study of a shock-wave-focusing geometry is presented in this work. The configuration serves as a reliable and deterministic detonation initiator in a pulsed detonation engine. The combustion chamber consists of a circular pipe with one convergent–divergent axisymmetric nozzle, acting as a focusing device for an incoming shock wave. Geometrical changes are proposed to reduce the minimum shock wave strength necessary for a successful detonation initiation. For that purpose, the adjoint approach is applied. The sensitivity of the initiation to flow variations delivered by this method is used to reshape the obstacle’s form. The thermodynamics is described by a higher-order temperature-dependent polynomial, avoiding the large errors of the constant adiabatic exponent assumption. The chemical reaction of stoichiometric premixed hydrogen-air is modelled by means of a one-step kinetics with a variable pre-exponential factor. This factor is adapted to reproduce the induction time of a complex kinetics model. The optimisation results in a 5% decrease of the incident shock wave threshold for the successful detonation initiation.


Author(s):  
Yun Jiao ◽  
Chengpeng Wang

An experimental study is conducted on the qualitative visualization of the flow field in separation and reattachment flows induced by an incident shock interaction by several techniques including shear-sensitive liquid crystal coating (SSLCC), oil flow, schlieren, and numerical simulation. The incident shock wave is generated by a wedge in a Mach 2.7 duct flow, where the strength of the interaction is varied from weak to moderate by changing the angle of attack α of the wedge from 8° and 10° to 12°. The stagnation pressure upstream was set to approximately 607.9 kPa. The SSLCC technique was used to visualize the surface flow characteristics and analyze the surface shear stress fields induced by the initial incident shock wave over the bottom wall and sidewall experimentally which resolution is 3500 × 200 pixels, and the numerical simulation was also performed as the supplement for a clearer understanding to the flow field. As a result, surface shear stress over the bottom wall was visualized qualitatively by SSLCC images, and flow features such as separation/reattachment and the variations of position/size of separation bubble with wedge angle were successfully distinguished. Furthermore, analysis of shear stress trend over the bottom wall by a hue value curve indicated that the relative magnitude of shear stress increased significantly downstream of the separation bubble compared with that upstream. The variation trend of shear stress was consistent with the numerical simulation results, and the error of separation position was less than 2 mm. Finally, the three-dimensional schematic of incident shock-induced interaction has been achieved by qualitative summary by multiple techniques, including SSLCC, oil flow, schlieren, and numerical simulation.


2020 ◽  
Vol 198 ◽  
pp. 104385
Author(s):  
Fulin Tong ◽  
Xinliang Li ◽  
Xianxu Yuan ◽  
Changping Yu

Sign in / Sign up

Export Citation Format

Share Document