High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing

2014 ◽  
Vol 105 (6) ◽  
pp. 063118 ◽  
Author(s):  
Daquan Yang ◽  
Shota Kita ◽  
Feng Liang ◽  
Cheng Wang ◽  
Huiping Tian ◽  
...  
CLEO: 2014 ◽  
2014 ◽  
Author(s):  
Daquan Yang ◽  
Shota Kita ◽  
Cheng Wang ◽  
Qimin Quan ◽  
Marko Loncar ◽  
...  

Author(s):  
Mohamad Hazwan Haron ◽  
Ahmad Rifqi Md Zain ◽  
Burhanuddin Yeop Majlis

Increasing the quality factor (Q) of an optical resonator device has been a research focus to be utilized in various applications. Higher Q-factor means light is confined in a longer time which will produce a shaper peak and higher transmission. In this paper, we introduce a novel technique to increase further the Q-factor of a one-dimensional photonic crystal (1D PhC) cavity device by using an end loop-mirror (ELM). The technique utilizes and recycles the light transmission from the conventional 1D PhC cavity design. The design has been proved to work by using the 2.5D FDTD simulation with Lumerical FDTD and MODE softwares. By using the ELM technique, the Q- factor of a 1D PhC design has been shown to have increased up to 79.53 % from the initial Q value without the ELM. This novel design technique can be combined with any high Q-factor and very high Q-factor designs to increase more the Q-factor value of a photonic crystal cavity devices or any other suitable optical resonator devices. The experimental result shows that the device is measurable by adding a Y-branch component to the one-port structure and able to get the high-Q result.


2021 ◽  
Author(s):  
Zaky Zaky ◽  
B. Moustafa ◽  
Arafa H. Aly

Abstract The performance of one-dimensional photonic crystal for plasma cell application is studied theoretically. The geometry of the structure can detect the change in the refractive index of the plasma cells in a sample that infiltrated through the defect layer. We have obtained a variation on the resonant peak positions using the analyte defect layer with different refractive indices. The defect peak of the optimized structure is red-shifted from 2195 nm to 2322nm when the refractive index of the defect layer changes from 1.3246 to 1.3634. This indicates a high sensitivity of the device (S=3300 nm/RIU) as well as a high Q-factor (Q=103). The proposed sensor has a great potential for biosensing applications and the detection of convalescent plasma.


2015 ◽  
Vol 7 (5) ◽  
pp. 1-6 ◽  
Author(s):  
Yuguang Zhang ◽  
Shoubao Han ◽  
Senlin Zhang ◽  
Penghao Liu ◽  
Yaocheng Shi

Photonics ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 99
Author(s):  
Mohamad Hazwan Haron ◽  
Burhanuddin Yeop Yeop Majlis ◽  
Ahmad Rifqi Md Zain

Increasing the quality factor (Q-factor) of an optical resonator device has been a research focus utilized in various applications. Higher Q-factor means light is confined in a longer time which will produce a sharper peak and higher transmission. In this paper, we introduce a novel technique to further increase the Q-factor of a one-dimensional photonic crystal (1D PhC) cavity device by using an end loop-mirror (ELM). The technique utilizes and recycles the transmitted light from the conventional 1D PhC cavity design. The design has been proven to work by using the 2.5D FDTD simulation with Lumerical FDTD and MODE software. By using the ELM technique, the Q-factor of a 1D PhC design has been shown to increase up to 79.53% from the initial Q value without the ELM. The experimental result shows that the device is measurable by adding a Y-branch component to the one-port structure and able to get a high Q result. This novel design technique can be combined with any high Q-factor and very high Q-factor designs to increase more Q-factor values of photonic crystal cavity devices or any other suitable optical resonator devices.


2008 ◽  
Vol 1133 ◽  
Author(s):  
Brian T. Cunningham ◽  
Leo Chan ◽  
Patrick C. Mathias ◽  
Nikhil Ganesh ◽  
Sherine George ◽  
...  

Abstract Photonic crystal surfaces represent a class of resonant optical structures that are capable of supporting high intensity electromagnetic standing waves with near-field and far-field properties that can be exploited for high sensitivity detection of biomolecules and cells. While modulation of the resonant wavelength of a photonic crystal by the dielectric permittivity of adsorbed biomaterials enables label-free detection, the resonance can also be tuned to coincide with the excitation wavelength of common fluorescent tags - including organic molecules and semiconductor quantum dots. Photonic crystals are also capable of efficiently channeling fluorescent emission into a preferred direction for enhanced extraction efficiency. Photonic crystals can be designed to support multiple resonant modes that can perform label free detection, enhanced fluorescence excitation, and enhanced fluorescence extraction simultaneously on the same device. Because photonic crystal surfaces may be inexpensively produced over large surface areas by nanoreplica molding processes, they can be incorporated into disposable labware for applications such as pharmaceutical high throughput screening. In this talk, the optical properties of surface photonic crystals will be reviewed and several applications will be described, including results from screening a 200,000-member chemical compound library for inhibitors of protein-DNA interactions, gene expression microarrays, and high sensitivity of protein biomarkers.


Sign in / Sign up

Export Citation Format

Share Document