Using digital image correlation and three dimensional point tracking in conjunction with real time operating data expansion techniques to predict full-field dynamic strain

Author(s):  
Peter Avitabile ◽  
Javad Baqersad ◽  
Christopher Niezrecki
2018 ◽  
Vol 910 ◽  
pp. 161-166 ◽  
Author(s):  
Tei Saburi ◽  
Toshiaki Takahashi ◽  
Shiro Kubota ◽  
Yuji Ogata

The dynamic strain distribution behavior of a mortar block blasting was experimentally investigated. A small-scale blasting experiment using a mortar block with well-defined property was conducted and the dynamic strain distribution on the mortal block surface was analyzed using a Digital Image Correlation (DIC) method to establish the effective method for investigating the relationship between blast design and fracture mechanism. The block was blasted by simultaneous detonation of Composition C4 explosive charges with an electric detonator in two boreholes. The behavior of the block surface was observed by two high-speed cameras for three-dimensional DIC analysis and it was also measured by a strain-gauge for comparison. The three-dimensional displacements of the free surface of the block were obtained and dynamic strain distributions were computed. A point strain profile extracted from the analyzed strain distribution data was compared with a directly observed strain profile by the strain gauge.


Sensors ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 3530
Author(s):  
Xu Liu ◽  
Rongsheng Lu

The testing of the mechanical properties of materials on a small scale is difficult because of the small specimen size and the difficulty of measuring the full-field strain. To tackle this problem, a testing system for investigating the mechanical properties of small-scale specimens based on the three-dimensional (3D) microscopic digital image correlation (DIC) combined with a micro tensile machine is proposed. Firstly, the testing system is described in detail, including the design of the micro tensile machine and the 3D microscopic DIC method. Then, the effects of different shape functions on the matching accuracy obtained by the inverse compositional Gauss–Newton (IC-GN) algorithm are investigated and the numerical experiment results verify that the error due to under matched shape functions is far larger than that of overmatched shape functions. The reprojection error is shown to be smaller than before when employing the modified iteratively weighted radial alignment constraint method. Both displacement and uniaxial measurements were performed to demonstrate the 3D microscopic DIC method and the testing system built. The experimental results confirm that the testing system built can accurately measure the full-field strain and mechanical properties of small-scale specimens.


2011 ◽  
Author(s):  
Bruce LeBlanc ◽  
Christopher Niezrecki ◽  
Peter Avitabile ◽  
Julie Chen ◽  
James Sherwood ◽  
...  

Author(s):  
yu wang ◽  
zhengyang song ◽  
zhiqiang hou ◽  
chun zhu

This work aims to reveal the anisotropic full-field displacemnet and the progressive failure behaviors of interbedded marble under uniaxial compression using three dimensional digital image correlation (3D DIC) technique. The effects of the interbed orientation on the field displacement and strain pattern and the crack evolution were analyzed qualitatively and quantitatively. Testing results show that different stress strain responses can be generated depending on the interbed orientation, and the interbeds influence the localized deformation and high strain concentration pattern. The field displacement evolution curves present different pattern and are impacted by the localized deformation. In addition, the strain localization takes places progressively and develops at a lower rate for rock with 0° and 90° interbed than those of 30° and 60° interbed rock. The quick shear-sliding along the interbed leads to the minimum strength of rock having 30° interbed orientation. It is suggested that rock anisotropic field deformation is structure depended.


Sign in / Sign up

Export Citation Format

Share Document