scholarly journals Real-time three-dimensional digital image correlation for biomedical applications

2016 ◽  
Vol 21 (10) ◽  
pp. 107003 ◽  
Author(s):  
Rong Wu ◽  
Hua Wu ◽  
Dwayne Arola ◽  
Dongsheng Zhang
Designs ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 15
Author(s):  
Andreas Thoma ◽  
Abhijith Moni ◽  
Sridhar Ravi

Digital Image Correlation (DIC) is a powerful tool used to evaluate displacements and deformations in a non-intrusive manner. By comparing two images, one from the undeformed reference states of the sample and the other from the deformed target state, the relative displacement between the two states is determined. DIC is well-known and often used for post-processing analysis of in-plane displacements and deformation of the specimen. Increasing the analysis speed to enable real-time DIC analysis will be beneficial and expand the scope of this method. Here we tested several combinations of the most common DIC methods in combination with different parallelization approaches in MATLAB and evaluated their performance to determine whether the real-time analysis is possible with these methods. The effects of computing with different hardware settings were also analyzed and discussed. We found that implementation problems can reduce the efficiency of a theoretically superior algorithm, such that it becomes practically slower than a sub-optimal algorithm. The Newton–Raphson algorithm in combination with a modified particle swarm algorithm in parallel image computation was found to be most effective. This is contrary to theory, suggesting that the inverse-compositional Gauss–Newton algorithm is superior. As expected, the brute force search algorithm is the least efficient method. We also found that the correct choice of parallelization tasks is critical in attaining improvements in computing speed. A poorly chosen parallelization approach with high parallel overhead leads to inferior performance. Finally, irrespective of the computing mode, the correct choice of combinations of integer-pixel and sub-pixel search algorithms is critical for efficient analysis. The real-time analysis using DIC will be difficult on computers with standard computing capabilities, even if parallelization is implemented, so the suggested solution would be to use graphics processing unit (GPU) acceleration.


2017 ◽  
Vol 8 (2) ◽  
pp. 337-347 ◽  
Author(s):  
Jorge Barrios-Muriel ◽  
Francisco Javier Alonso Sánchez ◽  
David Rodríguez Salgado ◽  
Francisco Romero-Sánchez

Abstract. Today there is continuous development of wearable devices in various fields such as sportswear, orthotics and personal gadgets, among others. The design of these devices involves the human body as a support environment. Based on this premise, the development of wearable devices requires an improved understanding of the skin strain field of the body segment during human motion. This paper presents a methodology based on a three dimensional digital image correlation (3D-DIC) system to measure the skin strain field and to estimate anatomical lines with minimum deformation as design criteria for the aforementioned wearable devices. The errors of displacement and strain measurement related to 3-D reconstruction and out-of-plane motion are investigated and the results are acceptable in the case of large deformation. This approach can be an effective tool to improve the design of wearable devices in the clinical orthopaedics and ergonomics fields, where comfort plays a key role in supporting the rehabilitation process.


2021 ◽  
Vol 263 (3) ◽  
pp. 3861-3870
Author(s):  
Kenji Homma ◽  
Paul R. Braunwart ◽  
Patrick L. Clavette

Digital Image Correlation (DIC) is an image-based method for measuring displacement and/or stain on the surface of a structure. When coupled with a stereo pair of highspeed cameras, DIC can also capture three-dimensional dynamic deformation of a structure under vibratory loading. However, high frequency and small amplitude displacement typically associated with structural vibrations mean that extra care is required during measurement and data processing. It becomes more challenging when thermal disturbances are present in the optical path, for example from a heated air flow, which introduces extraneous noise due to disturbances in the refractive index. In the present study, a simple composite plate was vibrated under a shaker excitation and stereo DIC measurements were performed. The obtained vibratory displacement results were compared against accelerometers and a laser Doppler vibrometer. Heated air flow was introduced in front of the plate to observe the effects of thermal disturbances on the DIC measurements. Although the contributions from the thermal disturbances were clearly visible in the DIC displacement data, it was shown that the vibratory deflections of the structure could still be extracted by post processing of the DIC data.


Sign in / Sign up

Export Citation Format

Share Document