scholarly journals Decay rates, structure functions and new physics effects in hadronic tau decays

1996 ◽  
Author(s):  
Markus Finkemeier ◽  
Erwin Mirkes
Author(s):  
Rodrigo Alonso ◽  
Jorge Martin Camalich ◽  
Susanne Westhoff

This article summarizes recent developments in B\to D^{(\ast)}\tau\nuB→D(*)τν decays. We explain how to extract the tau lepton’s production properties from the kinematics of its decay products. The focus is on hadronic tau decays, which are most sensitive to the tau polarizations. We present new results for effects of new physics in tau polarization observables and quantify the observation prospects at BELLE II.


2019 ◽  
Vol 212 ◽  
pp. 08002 ◽  
Author(s):  
Pablo Roig

When looking for heavy (O(few TeV)) New Physics, the most efficient way to bene?t from both high and low-energy measurements simultaneously is the use of the Standard Model Effective Field Theory (SMEFT). In this talk I highlight the importance of semileptonic τ decays in complementing, in this respect, the traditional low-energy precision observables and high-energy measurements. This is yet another reason for considering hadronic tau decays as golden channels at Belle-II beyond the unquestionable interest of the CP violation anomaly in τ → KS πντ decays, that I also discuss within the effective theory. A couple of new results for τ−→ K− ντ decays are also included.


2019 ◽  
Author(s):  
Gabriel Lopez Castro

Originally thought as clean processes to study the hadronization of the weak currents, semileptonic tau lepton decays can be useful to set constraints on non-standard (NS) weak interactions. We study the effects of new interactions in \tau^- \to (\pi^-\eta,\pi^-\pi^0)\nu_{\tau}τ−→(π−η,π−π0)ντ decays and find that they are sensitive probes of these New Physics effects in the form of scalar and tensor interactions, respectively. Further improved measurements at Belle II will set limits on these scalar interactions that are similar to other low and high energy processes.


2018 ◽  
Vol 300-302 ◽  
pp. 131-136
Author(s):  
Antonio Rodríguez-Sánchez ◽  
Antonio Pich
Keyword(s):  

2008 ◽  
Vol 110 (5) ◽  
pp. 052041
Author(s):  
I M Nugent
Keyword(s):  

2001 ◽  
Vol 16 (07) ◽  
pp. 441-455 ◽  
Author(s):  
ZHENJUN XIAO ◽  
WENJUN LI ◽  
GONGRU LU ◽  
LIBO GUO

Using the low energy effective Hamiltonian with the generalized factorization, we calculate the new physics contributions to B→π+π-, Kπ and Kη′ in the topcolor-assisted-technicolor (TC2) model, and compare the results with the available data. By using [Formula: see text] preferred by the CLEO data of B→π+π-decay, we find that the new physics enhancements to B→ Kη′ decays are significant in size, ~ 50% with respect to the standard model predictions, insensitive to the variations of input parameters and hence provide a simple and plausible new physics interpretation for the observed unexpectedly large B→ Kη′ decay rates.


Sign in / Sign up

Export Citation Format

Share Document