Existence and uniqueness of two dimensional Euler-Poisson system and WKB approximation to the nonlinear Schrödinger-Poisson system

2015 ◽  
Vol 56 (12) ◽  
pp. 121502
Author(s):  
Satoshi Masaki ◽  
Takayoshi Ogawa
1986 ◽  
Vol 29 (1) ◽  
pp. 47-56 ◽  
Author(s):  
Christian Constanda

Kirchhoff's kinematic hypothesis that leads to an approximate two-dimensional theory of bending of elastic plates consists in assuming that the displacements have the form [1]In general, the Dirichlet and Neumann problems for the equilibrium equations obtained on the basis of (1.1) cannot be solved by the boundary integral equation method both inside and outside a bounded domain because the corresponding matrix of fundamental solutions does not vanish at infinity [2]. However, as we show in this paper, the method is still applicable if the asymptotic behaviour of the solution is suitably restricted.


1996 ◽  
Vol 7 (3) ◽  
pp. 237-247 ◽  
Author(s):  
L. Prigozhin

We consider two-dimensional and axially symmetric critical-state problems in type-II superconductivity, and show that these problems are equivalent to evolutionary quasi-variational inequalities. In a special case, where the inequalities become variational, the existence and uniqueness of the solution are proved.


Sign in / Sign up

Export Citation Format

Share Document