Influence of ion nitriding regime on mechanical properties and fracture mechanism of austenitic steel subjected to different thermomechanical treatments

2016 ◽  
Author(s):  
Valentina Moskvina ◽  
Elena Astafurova ◽  
Kamil Ramazanov ◽  
Eugene Melnikov ◽  
Galina Maier ◽  
...  
2016 ◽  
Vol 52 (8) ◽  
pp. 4224-4233 ◽  
Author(s):  
Elena G. Astafurova ◽  
Valentina A. Moskvina ◽  
Galina G. Maier ◽  
Eugene V. Melnikov ◽  
Gennady N. Zakharov ◽  
...  

2017 ◽  
Author(s):  
Valentina Moskvina ◽  
Elena Astafurova ◽  
Galina Maier ◽  
Eugene Melnikov ◽  
Sergey Astafurov ◽  
...  

2020 ◽  
Vol 2020 (12) ◽  
pp. 1439-1445
Author(s):  
I. O. Bannykh ◽  
O. A. Bannykh ◽  
L. G. Rigina ◽  
E. N. Blinova ◽  
K. Yu. Demin ◽  
...  

2016 ◽  
Vol 35 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Zhiyuan Liang ◽  
Wanhua Sha ◽  
Qinxin Zhao ◽  
Chongbin Wang ◽  
Jianyong Wang ◽  
...  

AbstractThe effect of aging heat treatment on the microstructure and mechanical properties of 10Cr20Ni25Mo1.5NbN austenitic steel was investigated in this article. The microstructure was characterized by scanning electron microscopy, energy dispersive spectrometry and transmission electron microscopy. Results show that the microstructure of 10Cr20Ni25Mo1.5NbN austenitic is composed of austenite. This steel was strengthened by precipitates of secondary phases that were mainly M23C6 carbides and NbCrN nitrides. As aging treatment time increased, the tensile strength first rose (0–3,000 h) and then fell (3,000–5,000 h) due to the decrease of high density of dislocations. The impact absorbed energy decreased sharply, causing the sulfides to precipitate at the grain boundary. Therefore, the content of sulfur should be strictly controlled in the steelmaking process.


Sign in / Sign up

Export Citation Format

Share Document