The Effect of Aging Heat Treatment on the Microstructure and Mechanical Properties of 10Cr20Ni25Mo1.5NbN Austenitic Steel

2016 ◽  
Vol 35 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Zhiyuan Liang ◽  
Wanhua Sha ◽  
Qinxin Zhao ◽  
Chongbin Wang ◽  
Jianyong Wang ◽  
...  

AbstractThe effect of aging heat treatment on the microstructure and mechanical properties of 10Cr20Ni25Mo1.5NbN austenitic steel was investigated in this article. The microstructure was characterized by scanning electron microscopy, energy dispersive spectrometry and transmission electron microscopy. Results show that the microstructure of 10Cr20Ni25Mo1.5NbN austenitic is composed of austenite. This steel was strengthened by precipitates of secondary phases that were mainly M23C6 carbides and NbCrN nitrides. As aging treatment time increased, the tensile strength first rose (0–3,000 h) and then fell (3,000–5,000 h) due to the decrease of high density of dislocations. The impact absorbed energy decreased sharply, causing the sulfides to precipitate at the grain boundary. Therefore, the content of sulfur should be strictly controlled in the steelmaking process.

2014 ◽  
Vol 881-883 ◽  
pp. 1317-1329 ◽  
Author(s):  
Mahmoud M. Tash ◽  
Saleh Alkahtani

The present study was conducted to investigate the effect of heat treatment on the aging and mechanical behavior of Al-Cu-Mg-Li-Zr , Al-Mg-Si and and Al-Mg-Zn alloys (8090 , 6082 and 7075). The effect of cold work after solution treatment, aging parameters (time and temperature) on the microstructure and mechanical properties were studied. Attempts are made to determine the combined effect of cold work and aging treatment on the hardness, UTS and microstructure for these alloys. By study the impact of different heat treatments for Al-Mg-Si alloys (6082), Al-Cu-Mg-Li-Zr (8090) and Al-Mg-Zn (7075) aluminum alloys on the hardness and mechanical properties, it is possible to determine conditions necessary to achieve better mechanical properties and the maximum levels of hardness and values corresponding to those considered suitable for commercial applications of these alloys.Design of Experiment (DOE) method in Minitab is used to measure the impact of various factors and how they relate. Correlation between the hardness and different metallurgical factors for these alloys at both quantitative and qualitative are investigated and analysed. A statistical design of experiments (DOE) approach using fractional factorial design was applied to determine the influence of controlling variables of cold work and heat treatment parameters and any interactions between them on the hardness of the above alloys. A mathematical model is developed to relate the alloy hardness with the different metallurgical parameters to acquire an understanding of the effects of these variables and their interactions on the hardness of wrought Al-alloys. It is noticed that cold work, following solution treatment, accelerates the precipitation rate leading to a rise in strength


2007 ◽  
Vol 567-568 ◽  
pp. 361-364 ◽  
Author(s):  
Suk Bong Kang ◽  
Jae Hyung Cho ◽  
Hyoung Wook Kim ◽  
Y.M Jin

The sheet of ZK60 alloy with a thickness of 1mm was prepared from a casting ingot followed by homogenization and warm-rolling. Variations in microstructure and mechanical properties of ZK60 alloy sheets were investigated during T6 treatment. Especially artificial aging after solution heat treatment affected both precipitates distribution and mechanical properties with aging treatment. Variations of mechanical properties were related to precipitates, i.e. rod-shaped ( 1 β ′ ) or disc shaped ( 2 β ′ ) particles. Around the peak of hardness values, regularly distributed rod-shaped ( 1 β ′ ) precipitates were found. The rod-shaped ( 1 β ′ ) precipitates were oriented with a growth direction of [0001]. When over-aged, rod-shaped ( 1 β ′ ) precipitates were expected to decrease and the density of disc-shaped ( 2 β ′ ) precipitates to change. The rod-shaped ( 1 β ′ ) precipitates mainly consist of {Mg, Zn}, while disc-shaped ( 2 β ′ ) precipitates, {Mg, Zn, Zr} or {Mg, Zn}. In this study the optimum T6 treatment was determined as solution treatment at 430 °C for 6 hours and subsequently aging treatment at 175 °C for 18 hours. At this T6 condition the tensile strength, yield strength and elongation are 321MPa, 280MPa and 16%, respectively.


2013 ◽  
Vol 765 ◽  
pp. 511-515 ◽  
Author(s):  
Da Quan Li ◽  
Xiao Kang Liang ◽  
Fu Bao Yang ◽  
You Feng He ◽  
Fan Zhang ◽  
...  

The evolution of microstructure and mechanical properties during solution and ageing heat treatment process was studied in terms of a thixo-diecast impeller of 319s aluminium alloy. The cast alloy exhibited a microstructure consisting of primary uniformly distributed in α-Al globules and the eutectics. A series of heat treatment studies were performed to determine optimum heat treatment parameters, in order to achieve fine grain structure, fine silicon particles and optimal precipitate size and distribution. Optical microscopy (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were employed to study the evolution of microstructure and mechanical properties. The results demonstrate that, the full T6 heat treatments are successfully applied to thixo-diecast 319s impellers. A two-step solution heat treatment is employed to prevent porosity due to overheating. The tensile properties of thixo-diecast 319s impellers were substantially enhanced after T6 heat treatment. The plate-shaped θ′ precipitates and lath-shaped Q′ precipitates are the most effective for precipitation strengthening.


2015 ◽  
Vol 60 (3) ◽  
pp. 1813-1818
Author(s):  
J. Piątkowski ◽  
T. Matuła

Abstract In the paper results of the microstructure and mechanical properties (HB, Rm and R0,2) of AlSi17Cu5 alloy, subjected by solution heat treatment (500ºC/6h/woda) and aging (200ºC/16h/piec) are presented. In next step the alloy was modified and heated significantly above the Tliq temperature (separately and together). It was found that the increase in the strength properties of the tested alloy after heat treatment compared to alloys without solution heat treatment and aging was due to precipitation hardening. The applied aging treatment of ingots (preceded by solution heat treatment), causes not only increase in concentration in α(Al) solid solution, but also a favorable change of the primary Si crystals morphology. During stereological measurements significant size reduction and change in the morphology of hypereutectic silicon crystals ware found. This effects can be further enhanced by overheating the alloy to a temperature of 920ºC and rapid cooling before casting of the alloy.


2012 ◽  
Vol 557-559 ◽  
pp. 34-37
Author(s):  
Jing Qiang Zhang ◽  
Jie Min Du ◽  
Ji Wei Guo ◽  
Shou Fan Rong ◽  
Guang Zhou Wang

The influences of Mn and heat-treatment technology on microstructure and mechanical properties of medium-carbon-low-alloy wear-resistant cast steel were investigated. The results show that the hardness first increases and then drops down with the increase of Mn content, and the best hardness is 54HRC with Mn content 1.5%. The impact toughness first increases and then drops down with the increase of Mn content. The hardness and impact toughness first increase and then drop down with the increases of quenching temperature. The optimal impact toughness can be obtaind by quenching at 920°C and tempering at 200°C. Part of lower bainite and residual austenite and mass of tempered martensite are obtaind after tempering.


2011 ◽  
Vol 197-198 ◽  
pp. 1125-1128 ◽  
Author(s):  
Jing Jiang Nie ◽  
Liang Meng ◽  
Xiu Rong Zhu ◽  
Yong Dong Xu ◽  
Yue Yi Wu ◽  
...  

The effect of the combined action of hot work and heat treatment on the microstructure and mechanical properties of a Mg-2Gd-Nd-0.4Zn-0.3Zr (wt. %) (E21) alloy was investigated. Results showed that the solution treatment time of the ingot played a great effect on the mechanical properties of the extruded alloy. With solution treating time of the ingot increasing, the tensile strength of the extruded alloy decreased gradually, but the elongation increased greatly. The best combination of strength and ductility was achieved for the extruded alloy after the ingot solution treated at 520°C for 3 h, extrusion at 400°C and aging at 200°C for 16 h, namely ultimate tensile strength = 331MPa and elongation = 7.1%.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 268
Author(s):  
Ji-Hoon Jang ◽  
Dong-Geun Lee

The cytotoxic tissue reactions of alloying elements (Al, V) of Ti-6Al-4V have been reported, whereas the Ti-39Nb-6Zr (TNZ40) alloy developed by adding β-phase stabilizing elements is known to have no cytotoxicity and exhibits excellent biocompatibility. In addition, there is a slight modulus difference between the TNZ40 alloy and human bones as the elastic modulus of the TNZ40 alloy is very low. This can inhibit detrimental effects such as osteoblast loss due to a stress-shielding effect. In this study, various Si contents were added and heat treatment under various conditions was performed to control the microstructure and mechanical properties of the TNZ40 alloy. In the β-type titanium alloy, the ω phase is commonly observed by quenching from the solution-treatment or aging-treatment temperature. These ω precipitates can typically increase the elastic modulus, hardness, and embrittlement of the β-type titanium alloy, which are important to control this phase. The correlation between Si content and precipitation and the effects of solution treatment and aging condition on the mechanical properties such as tensile strength, and hardness, were analyzed.


Sign in / Sign up

Export Citation Format

Share Document