scholarly journals A N = 2 extension of the Hirota bilinear formalism and the supersymmetric KdV equation

2017 ◽  
Vol 58 (1) ◽  
pp. 013504 ◽  
Author(s):  
Laurent Delisle
1995 ◽  
Vol 10 (27) ◽  
pp. 2019-2028 ◽  
Author(s):  
J.C. BRUNELLI ◽  
ASHOK DAS

We show that the supersymmetric nonlinear Schrödinger equation is a bi-Hamiltonian integrable system. We obtain the two Hamiltonian structures of the theory from the ones of the supersymmetric two-boson hierarchy through a field redefinition. We also show how the two Hamiltonian structures of the supersymmetric KdV equation can also be derived from a Hamiltonian reduction of the supersymmetric two-boson hierarchy.


2015 ◽  
Vol 27 (04) ◽  
pp. 1550011 ◽  
Author(s):  
Partha Guha

Recently, Kupershmidt [38] presented a Lie algebraic derivation of a new sixth-order wave equation, which was proposed by Karasu-Kalkani et al. [31]. In this paper, we demonstrate that Kupershmidt's method can be interpreted as an infinite-dimensional analogue of the Euler–Poincaré–Suslov (EPS) formulation. In a finite-dimensional case, we modify Kupershmidt's deformation of the Euler top equation to obtain the standard EPS construction on SO(3). We extend Kupershmidt's infinite-dimensional construction to construct a nonholonomic deformation of a wide class of coupled KdV equations, where all these equations follow from the Euler–Poincaré–Suslov flows of the right invariant L2 metric on the semidirect product group [Formula: see text], where Diff (S1) is the group of orientation preserving diffeomorphisms on a circle. We generalize our construction to the two-component Camassa–Holm equation. We also give a derivation of a nonholonomic deformation of the N = 1 supersymmetric KdV equation, dubbed as sKdV6 equation and this method can be interpreted as an infinite-dimensional supersymmetric analogue of the Euler–Poincaré–Suslov (EPS) method.


2020 ◽  
Vol 34 (29) ◽  
pp. 2050274 ◽  
Author(s):  
Corina N. Babalic

In this paper, we show that complete integrability is preserved in a multicomponent differential-difference Volterra system with branched dispersion relation. Using the Hirota bilinear formalism, we construct multisoliton solutions for a system of coupled [Formula: see text] equations. We also show that one can obtain the same solutions through a periodic reduction starting from a two-dimensional completely integrable generalized Volterra system. For some particular cases, graphical representations of solitons are displayed and stability is discussed using an asymptotic analysis.


2019 ◽  
Vol 33 (27) ◽  
pp. 1950319 ◽  
Author(s):  
Hongfei Tian ◽  
Jinting Ha ◽  
Huiqun Zhang

Based on the Hirota bilinear form, lump-type solutions, interaction solutions and periodic wave solutions of a (3[Formula: see text]+[Formula: see text]1)-dimensional Korteweg–de Vries (KdV) equation are obtained. The interaction between a lump-type soliton and a stripe soliton including two phenomena: fission and fusion, are illustrated. The dynamical behaviors are shown more intuitively by graphics.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Najah Kabalan ◽  
Mahmoud Ahmad ◽  
Ali Asad

The effect of the structure parameter on the compressibility of dust grains and soliton behavior in a dusty plasma system consisting of Maxwellian electrons, ions, and dust grains charged with a negative charge has been studied. In the theoretical study, a reductive perturbation technique was used to derive the Korteweg-de Vries (KdV) equation and employ the Hirota bilinear method to obtain multisoliton solution. It is found that coupling and structure parameters have a clear effect on the compressibility. These changes in the compressibility affected the amplitude and width of interactive solitons, in addition to the phase shifts resulting from the interaction. These results can be used to understand the behavior of solitary waves that occur in various natural and laboratory plasma environments with dust impurity situations.


Sign in / Sign up

Export Citation Format

Share Document