A grid-side reactive power control strategy for highly offshore wind power penetrated systems

2018 ◽  
Vol 10 (2) ◽  
pp. 023302
Author(s):  
Fuyuan Huang ◽  
Huaiyuan Wang ◽  
Buying Wen
Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3906
Author(s):  
Hesong Cui ◽  
Xueping Li ◽  
Gongping Wu ◽  
Yawei Song ◽  
Xiao Liu ◽  
...  

The ESS is considered as an effective tool for enhancing the flexibility and controllability of a wind farm, and the optimal control scheme of a wind farm with distributed ESSs is vital to the stable operation of wind power generation. In this paper, a coordinated active and reactive power control strategy based on model predictive control (MPC) is proposed for doubly fed induction generator (DFIG)-based wind farm (WF) with distributed energy storage systems (ESSs). The proposed control scheme coordinates the active and reactive power output among DFIG wind turbines (WTs), grid-side converters (GSCs), and distributed ESSs inside the WF, and the aim is to decrease fatigue loads of WTs, make the WT terminal voltage inside the extent practicable, and take the WF economic operation into consideration. Moreover, the best reactive power references of DFIG stator and GSC are produced independently based on their dynamics. At last, the control scheme generates optimal power references for all ESS to make the SOC of each ESS converge to their average state. With the distributed ESSs, the WF controller regulates the WTs inside WF more flexibly. A WF composed of 10 DFIG WTs was utilized to verify the control performance of the proposed coordinated active and reactive power control strategy.


2021 ◽  
Vol 13 (16) ◽  
pp. 9060
Author(s):  
Salah Tamalouzt ◽  
Youcef Belkhier ◽  
Younes Sahri ◽  
Mohit Bajaj ◽  
Nasim Ullah ◽  
...  

A novel direct reactive power control strategy based on the three-level inverter topology (DRPC-3N) is proposed for a doubly fed induction generator (DFIG)-based wind power plant system. The robustness against parametric variations and control performances of the presented methodology are analyzed under random wind speeds, taking into account the effect of the heating of the windings as well as the saturation of the magnetic circuit. The performance indices include obtaining a sinusoidal AC-generated current with low THD and less ripples in the output. Moreover, the generator can be considered as a reactive power compensator, which allows for the controlling of the active and reactive power of the stator side connected directly to the grid side using only the rotor converter. In this study, unpredictable conduct of the wind velocity that forces the DFIG to operate through all modes of operation in a continual and successive way is considered. The received wind power is utilized to extract the optimum power by using an appropriate MPPT algorithm, and the pitch angle control is activated during the overspeed to restrict the produced active power. The simulation tests are performed under Matlab/Simulink and the presented results show the robustness and effectiveness of the new DRPC strategy with the proposed topology, which means that the performances are more sophisticated.


Sign in / Sign up

Export Citation Format

Share Document