Strong instability of standing waves for the fractional Choquard equation

2018 ◽  
Vol 59 (8) ◽  
pp. 081509 ◽  
Author(s):  
Tarek Saanouni
2020 ◽  
Vol 10 (1) ◽  
pp. 311-330 ◽  
Author(s):  
Feng Binhua ◽  
Ruipeng Chen ◽  
Jiayin Liu

Abstract In this paper, we study blow-up criteria and instability of normalized standing waves for the fractional Schrödinger-Choquard equation $$\begin{array}{} \displaystyle i\partial_t\psi- (-{\it\Delta})^s \psi+(I_\alpha \ast |\psi|^{p})|\psi|^{p-2}\psi=0. \end{array}$$ By using localized virial estimates, we firstly establish general blow-up criteria for non-radial solutions in both L2-critical and L2-supercritical cases. Then, we show existence of normalized standing waves by using the profile decomposition theory in Hs. Combining these results, we study the strong instability of normalized standing waves. Our obtained results greatly improve earlier results.


2020 ◽  
Vol 10 (1) ◽  
pp. 732-774
Author(s):  
Zhipeng Yang ◽  
Fukun Zhao

Abstract In this paper, we study the singularly perturbed fractional Choquard equation $$\begin{equation*}\varepsilon^{2s}(-{\it\Delta})^su+V(x)u=\varepsilon^{\mu-3}(\int\limits_{\mathbb{R}^3}\frac{|u(y)|^{2^*_{\mu,s}}+F(u(y))}{|x-y|^\mu}dy)(|u|^{2^*_{\mu,s}-2}u+\frac{1}{2^*_{\mu,s}}f(u)) \, \text{in}\, \mathbb{R}^3, \end{equation*}$$ where ε > 0 is a small parameter, (−△)s denotes the fractional Laplacian of order s ∈ (0, 1), 0 < μ < 3, $2_{\mu ,s}^{\star }=\frac{6-\mu }{3-2s}$is the critical exponent in the sense of Hardy-Littlewood-Sobolev inequality and fractional Laplace operator. F is the primitive of f which is a continuous subcritical term. Under a local condition imposed on the potential V, we investigate the relation between the number of positive solutions and the topology of the set where the potential attains its minimum values. In the proofs we apply variational methods, penalization techniques and Ljusternik-Schnirelmann theory.


Author(s):  
T. SAANOUNI

AbstractThe initial value problems for some semilinear wave and heat equations are investigated in two space dimensions. By proving the existence of ground state, strong instability of standing waves for the associated wave and heat equations are obtained.


2017 ◽  
Vol 58 (1) ◽  
pp. 011504 ◽  
Author(s):  
Zhipeng Cheng ◽  
Zifei Shen ◽  
Minbo Yang

Sign in / Sign up

Export Citation Format

Share Document