scholarly journals Point contact spectroscopy of superconductors via nanometer scale point contacts formed by resistive switching

AIP Advances ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 125217 ◽  
Author(s):  
Mária Dvoranová ◽  
Tomáš Plecenik ◽  
Martin Moško ◽  
Marek Vidiš ◽  
Maroš Gregor ◽  
...  
1999 ◽  
Vol 09 (PR10) ◽  
pp. Pr10-179-Pr10-181
Author(s):  
A. A. Sinchenko ◽  
Yu. I. Latyshev ◽  
S. G. Zybtsev ◽  
I. G. Gorllova

2020 ◽  
Vol 11 ◽  
pp. 680-687
Author(s):  
Atasi Chatterjee ◽  
Christoph Tegenkamp ◽  
Herbert Pfnür

Even though there have been many experimental attempts and theoretical approaches to understand the process of electromigration (EM), it has not been quantitatively understood for ultrathin structures and at grain boundaries. Nevertheless, we showed recently that it can be used reliably for the formation of single atomic point contacts after careful pre-structuring of the initial Ag nanostructures. The process of formation of nanocontacts by EM down to a single-atom point contact was investigated for ultrathin (5 nm) Ag structures at 100 K by measuring the conductance as a function of the time during EM. In this paper, we compare the process of thinning by EM of structures with constrictions below the average grain size of Ag layers (15 nm) with that of structures with much larger initial constrictions of around 150 nm having multiple grains at the centre constriction prior to the formation of a point contact. Even though clear morphological differences exist between both types of structures, quantized conductance plateaus showing the formation of single point contacts have been observed for both. Here we put emphasis on the thinning process by EM, just before a point contact is formed. To understand this thinning process, the semi-classical regime before the contact reaches the quantum regime was analyzed in detail. For this purpose, we used experimental conductance histograms in the range between 2G 0 and 15G 0 and their corresponding Fourier transforms (FTs). The FT analysis of the conductance histograms exhibits a clear preference for thinning along the [100] direction. Using well-established models, both atom-by-atom steps and ranges of stability, presumably caused by electronic shell effects, can be discriminated. Although the directional motion of atoms during EM leads to specific properties such as the instabilities mentioned, similarities to mechanically opened contacts with respect to cross-sectional stability were found.


2000 ◽  
Vol 332 (1-4) ◽  
pp. 450-455 ◽  
Author(s):  
P Martı́nez-Samper ◽  
J.G Rodrigo ◽  
N Agraı̈t ◽  
R Grande ◽  
S Vieira

Author(s):  
Eduardo de la Guerra Ochoa ◽  
Javier Echávarri Otero ◽  
Enrique Chacón Tanarro ◽  
Benito del Río López

This article presents a thermal resistances-based approach for solving the thermal-elastohydrodynamic lubrication problem in point contact, taking the lubricant rheology into account. The friction coefficient in the contact is estimated, along with the distribution of both film thickness and temperature. A commercial tribometer is used in order to measure the friction coefficient at a ball-on-disc point contact lubricated with a polyalphaolefin base. These data and other experimental results available in the bibliography are compared to those obtained by using the proposed methodology, and thermal effects are analysed. The new approach shows good accuracy for predicting the friction coefficient and requires less computational cost than full thermal-elastohydrodynamic simulations.


1982 ◽  
Vol 53 (11) ◽  
pp. 7887-7889 ◽  
Author(s):  
I. Frankowski ◽  
P. Wachter

1995 ◽  
Vol 32 (9) ◽  
pp. 783-783 ◽  
Author(s):  
St Thieme ◽  
P Steiner ◽  
L Degiorgi ◽  
P Wachter ◽  
Y Dalichaouch ◽  
...  

1982 ◽  
Vol 104 (3) ◽  
pp. 365-375 ◽  
Author(s):  
C. Cusano ◽  
L. D. Wedeven

The effects of artificially-produced dents and grooves on the elastohydrodynamic (EHD) film thickness profile in a sliding point contact are investigated by means of optical interferometry. The defects, formed on the surface of a highly polished ball, are held stationary at various locations within and in the vicinity of the contact region while the disk is rotating. It is shown that the defects, having a geometry similar to what can be expected in practice, can dramatically change the film thickness which exists when no defects are present in or near the contact. This change in film thickness is mainly a function of the position of the defects in the inlet region, the geometry of the defects, the orientation of the defects in the case of grooves, and the depth of the defect relative to the central film thickness.


Sign in / Sign up

Export Citation Format

Share Document