Strange attractor existence for non-local operators applied to four-dimensional chaotic systems with two equilibrium points

2019 ◽  
Vol 29 (2) ◽  
pp. 023117 ◽  
Author(s):  
Emile F. Doungmo Goufo
2016 ◽  
Vol 93 ◽  
pp. 58-63 ◽  
Author(s):  
Viet–Thanh Pham ◽  
Sajad Jafari ◽  
Christos Volos ◽  
Tomasz Kapitaniak

2001 ◽  
Vol 201 (1) ◽  
pp. 19-60 ◽  
Author(s):  
Thomas Branson ◽  
A. Rod Gover

2018 ◽  
Vol 7 (3) ◽  
pp. 1931 ◽  
Author(s):  
Sivaperumal Sampath ◽  
Sundarapandian Vaidyanathan ◽  
Aceng Sambas ◽  
Mohamad Afendee ◽  
Mustafa Mamat ◽  
...  

This paper reports the finding a new four-scroll chaotic system with four nonlinearities. The proposed system is a new addition to existing multi-scroll chaotic systems in the literature. Lyapunov exponents of the new chaotic system are studied for verifying chaos properties and phase portraits of the new system via MATLAB are unveiled. As the new four-scroll chaotic system is shown to have three unstable equilibrium points, it has a self-excited chaotic attractor. An electronic circuit simulation of the new four-scroll chaotic system is shown using MultiSIM to check the feasibility of the four-scroll chaotic model.


Author(s):  
Meng Jiao Wang ◽  
Xiao Han Liao ◽  
Yong Deng ◽  
Zhi Jun Li ◽  
Yi Ceng Zeng ◽  
...  

Systems with hidden attractors have been the hot research topic of recent years because of their striking features. Fractional-order systems with hidden attractors are newly introduced and barely investigated. In this paper, a new 4D fractional-order chaotic system with hidden attractors is proposed. The abundant and complex hidden dynamical behaviors are studied by nonlinear theory, numerical simulation, and circuit realization. As the main mode of electrical behavior in many neuroendocrine cells, bursting oscillations (BOs) exist in this system. This complicated phenomenon is seldom found in the chaotic systems, especially in the fractional-order chaotic systems without equilibrium points. With the view of practical application, the spectral entropy (SE) algorithm is chosen to estimate the complexity of this fractional-order system for selecting more appropriate parameters. Interestingly, there is a state variable correlated with offset boosting that can adjust the amplitude of the variable conveniently. In addition, the circuit of this fractional-order chaotic system is designed and verified by analog as well as hardware circuit. All the results are very consistent with those of numerical simulation.


Mathematics ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 94 ◽  
Author(s):  
Xinhe Zhu ◽  
Wei-Shih Du

Chaotic systems with hidden attractors, infinite number of equilibrium points and different closed curve equilibrium have received much attention in the past six years. In this work, we introduce a new family of chaotic systems with different closed curve equilibrium. Using the methods of equilibrium points, phase portraits, maximal Lyapunov exponents, Kaplan–Yorke dimension, and eigenvalues, we analyze the dynamical properties of the proposed systems and extend the general knowledge of such systems.


2006 ◽  
Vol 23 (4) ◽  
pp. 786-789 ◽  
Author(s):  
Ao Bin ◽  
Ma Xiao-Juan ◽  
Li Yun-Yun ◽  
Zheng Zhi-Gang

Author(s):  
Tadele Mengesha ◽  
Qiang Du

In this paper, the bond-based peridynamic system is analysed as a non-local boundary-value problem with volume constraint. The study extends earlier works in the literature on non-local diffusion and non-local peridynamic models, to include non-positive definite kernels. We prove the well-posedness of both linear and nonlinear variational problems with volume constraints. The analysis is based on some non-local Poincaré-type inequalities and the compactness of the associated non-local operators. It also offers careful characterizations of the associated solution spaces, such as compact embedding, separability and completeness. In the limit of vanishing non-locality, the convergence of the peridynamic system to the classical Navier equations of elasticity with Poisson ratio ¼ is demonstrated.


2021 ◽  
Vol 7 (1) ◽  
pp. 260-275
Author(s):  
Zihan Cai ◽  
◽  
Yan Liu ◽  
Baiping Ouyang ◽  

<abstract><p>In this paper, we consider the Cauchy problem for a family of evolution-parabolic coupled systems, which are related to the classical thermoelastic plate equations containing non-local operators. By using diagonalization procedure and WKB analysis, we derive representation of solutions in the phase space. Then, sharp decay properties in a framework of $ L^p-L^q $ are investigated via these representations. Particularly, some thresholds for the regularity-loss type decay properties are found.</p></abstract>


Sign in / Sign up

Export Citation Format

Share Document