Effect of electron inertia on radiative instability of optically thick plasma

2019 ◽  
Author(s):  
S. Sharma ◽  
D. L. Sutar ◽  
R. K. Pensia ◽  
A. Patidar
2012 ◽  
Vol 90 (12) ◽  
pp. 1209-1221 ◽  
Author(s):  
A.K. Patidar ◽  
R.K. Pensia ◽  
V. Shrivastava

The problem of radiative instability of homogeneous rotating partially ionized plasma incorporating viscosity, porosity, and electron inertia in the presence of a magnetic field is investigated. A general dispersion relation is obtained using normal mode analysis with the help of relevant linearized perturbation equations of the problem. The modified Jeans criterion of instability is obtained. The conditions of Jeans instabilities are discussed in the different cases of interest. It is found that the simultaneous effect of viscosity, rotation, finite conductivity, and porosity of the medium does not essentially change the Jeans criterion of instability. It is also found that the presence of arbitrary radiative heat-loss function and thermal conductivity modified the conditions of Jeans instability for longitudinal propagation. It is found that, for longitudinal propagation, the conditions of radiative instability are independent of magnetic field, viscosity, rotation, finite electrical resistivity, and electron inertia, but for the transverse mode of propagation it depends upon finite electrical resistivity and strength of magnetic field and is independent of viscosity, electron inertia, and rotation. From the curves we find that viscosity has a stabilizing effect on the growth rate of instability but the thermal conductivity and density-dependent heat-loss function has a destabilizing effect on the instability growth rate.


2021 ◽  
Vol 87 (2) ◽  
Author(s):  
Todd Elder ◽  
Allen H. Boozer

The prominence of nulls in reconnection theory is due to the expected singular current density and the indeterminacy of field lines at a magnetic null. Electron inertia changes the implications of both features. Magnetic field lines are distinguishable only when their distance of closest approach exceeds a distance $\varDelta _d$ . Electron inertia ensures $\varDelta _d\gtrsim c/\omega _{pe}$ . The lines that lie within a magnetic flux tube of radius $\varDelta _d$ at the place where the field strength $B$ is strongest are fundamentally indistinguishable. If the tube, somewhere along its length, encloses a point where $B=0$ vanishes, then distinguishable lines come no closer to the null than $\approx (a^2c/\omega _{pe})^{1/3}$ , where $a$ is a characteristic spatial scale of the magnetic field. The behaviour of the magnetic field lines in the presence of nulls is studied for a dipole embedded in a spatially constant magnetic field. In addition to the implications of distinguishability, a constraint on the current density at a null is obtained, and the time required for thin current sheets to arise is derived.


2005 ◽  
Vol 12 (9) ◽  
pp. 092505 ◽  
Author(s):  
Taro Matsumoto ◽  
Hiroshi Naitou ◽  
Shinji Tokuda ◽  
Yasuaki Kishimoto
Keyword(s):  

2017 ◽  
Vol 846 (2) ◽  
pp. L18 ◽  
Author(s):  
Silvio Sergio Cerri ◽  
Sergio Servidio ◽  
Francesco Califano

1995 ◽  
Vol 163 ◽  
pp. 87-95
Author(s):  
I. I. Antokhin

Observational data suggest that WR atmospheres must be considered as highly inhomogeneous objects incorporating strong shocks induced by radiative instability and full-scale supersonic turbulence, with relatively small mean mass-loss rates.


Sign in / Sign up

Export Citation Format

Share Document