scholarly journals Thermal stability of CsPbBr3 perovskite as revealed by in situ transmission electron microscopy

APL Materials ◽  
2019 ◽  
Vol 7 (7) ◽  
pp. 071110 ◽  
Author(s):  
Chao Zhang ◽  
Joseph F. S. Fernando ◽  
Konstantin L. Firestein ◽  
Joel E. von Treifeldt ◽  
Dumindu Siriwardena ◽  
...  
Microscopy ◽  
2018 ◽  
Vol 67 (2) ◽  
pp. 112-120
Author(s):  
Hiroyasu Saka ◽  
Hiroyuki Iwata ◽  
Daisuke Kawaguchi

Abstract Radiation of a permeable laser beam into Si induces considerable modification of structures. Thermal stability of the laser-induced modified volumes (LIMV’s) was studied comprehensively by means of in situ and ex situ heating experiments using transmission electron microscopy. The behavior in the tail region of a LIMV can be understood by dislocation theory, while that of a void formed at the very focus of a laser beam cannot be understood easily.


2005 ◽  
Vol 20 (7) ◽  
pp. 1741-1750
Author(s):  
L.C. Nistor ◽  
O. Richard ◽  
C. Zhao ◽  
H. Bender ◽  
G. Van Tendeloo

The thermal stability of amorphous Zr:Al mixed oxide films of different composition, produced on (001) silicon wafers by the atomic layer deposition method is studied by transmission electron microscopy during in situ heating experiments. The temperatures at which phase separation and crystallization occur are composition dependent. The crystallization of thick films (55–70 nm), deposited on HF-treated silicon surfaces covered with a 15 cycles Al2O3 layer, results in the formation of cubic ZrO2 and cubic γ–Al2O3. In very thin films (5 nm), deposited on silicon surfaces covered with a 0.5 nm SiO2 thin film, the formation of tetragonal zirconium disilicide (ZrSi2) is observed in the microscope vacuum, at temperatures above 900 °C. This effect depends on the thickness of the as deposited thin film.


NANO ◽  
2018 ◽  
Vol 13 (10) ◽  
pp. 1850119
Author(s):  
Xiaoyan Li ◽  
Yunlong Yu ◽  
Xiangfeng Guan ◽  
Peihui Luo ◽  
Linqin Jiang ◽  
...  

Eu[Formula: see text]/Tb[Formula: see text] co-doped nanocomposite containing CeO2 nanocrystals was successfully prepared by an in situ sol–gel polymerization approach. High-resolution transmission electron microscopy demonstrated the homogeneous precipitation of CeO2 nanocrystals among the polymethylmethacrylate (PMMA) matrix. The thermal stability and UV-shielding capability of the obtained nanocomposite were improved with increase of CeO2 content. The tuning of the emissive color from green and yellow to red can be easily achieved by varying the dopant species and concentration. These results suggested that the obtained nanocomposite could be potentially applicable in transparent solid-state luminescent devices.


Sign in / Sign up

Export Citation Format

Share Document