Global structure of positive steady-state solutions for a class of predator-prey model with cross-diffusion

2019 ◽  
Author(s):  
Cuiping Ren ◽  
Pan Xue ◽  
Yinli Dong
2012 ◽  
Vol 05 (04) ◽  
pp. 1250016 ◽  
Author(s):  
JIA LIU ◽  
HUA ZHOU ◽  
LAI ZHANG

In this paper, we consider a sex-structured predator–prey model with strongly coupled nonlinear reaction diffusion. Using the Lyapunov functional and Leray–Schauder degree theory, the existence and stability of both homogenous and heterogenous steady-states are investigated. Our results demonstrate that the unique homogenous steady-state is locally asymptotically stable for the associated ODE system and PDE system with self-diffusion. With the presence of the cross-diffusion, the homogeneous equilibrium is destabilized, and a heterogenous steady-state emerges as a consequence. In addition, the conditions guaranteeing the emergence of Turing patterns are derived.


2019 ◽  
Vol 29 (03) ◽  
pp. 1950036 ◽  
Author(s):  
R. Sivasamy ◽  
M. Sivakumar ◽  
K. Balachandran ◽  
K. Sathiyanathan

This study focuses on the spatial-temporal dynamics of predator–prey model with cross-diffusion where the intake rate of prey is per capita predator according to ratio-dependent functional response and the prey is harvested through nonlinear harvesting strategy. The permanence analysis and local stability analysis of the proposed model without cross-diffusion are analyzed. We derive the conditions for the appearance of diffusion-driven instability and global stability of the considered model. Also the parameter space for Turing region is specified by keeping the cross-diffusion coefficient as one of the crucial parameters. Numerical simulations are given to justify the proposed theoretical results and to show that the cross-diffusion term plays a significant role in the pattern formation.


2012 ◽  
Vol 2012 ◽  
pp. 1-18 ◽  
Author(s):  
Shengmao Fu ◽  
Lina Zhang

In this paper, we consider a cross-diffusion predator-prey model with sex structure. We prove that cross-diffusion can destabilize a uniform positive equilibrium which is stable for the ODE system and for the weakly coupled reaction-diffusion system. As a result, we find that stationary patterns arise solely from the effect of cross-diffusion.


2018 ◽  
Vol 28 (11) ◽  
pp. 2131-2159 ◽  
Author(s):  
Willian Cintra ◽  
Cristian Morales-Rodrigo ◽  
Antonio Suárez

In this paper, we study the existence and non-existence of coexistence states for a cross-diffusion system arising from a prey–predator model with a predator satiation term. We use mainly bifurcation methods and a priori bounds to obtain our results. This leads us to study the coexistence region and compare our results with the classical linear diffusion predator–prey model. Our results suggest that when there is no abundance of prey, the predator needs to be a good hunter to survive.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Xinze Lian ◽  
Shuling Yan ◽  
Hailing Wang

We consider the effect of time delay and cross diffusion on the dynamics of a modified Leslie-Gower predator-prey model incorporating a prey refuge. Based on the stability analysis, we demonstrate that delayed feedback may generate Hopf and Turing instability under some conditions, resulting in spatial patterns. One of the most interesting findings is that the model exhibits complex pattern replication: the model dynamics exhibits a delay and diffusion controlled formation growth not only to spots, stripes, and holes, but also to spiral pattern self-replication. The results indicate that time delay and cross diffusion play important roles in pattern formation.


Sign in / Sign up

Export Citation Format

Share Document