CROSS-DIFFUSION INDUCED TURING PATTERNS IN A SEX-STRUCTURED PREDATOR–PREY MODEL

2012 ◽  
Vol 05 (04) ◽  
pp. 1250016 ◽  
Author(s):  
JIA LIU ◽  
HUA ZHOU ◽  
LAI ZHANG

In this paper, we consider a sex-structured predator–prey model with strongly coupled nonlinear reaction diffusion. Using the Lyapunov functional and Leray–Schauder degree theory, the existence and stability of both homogenous and heterogenous steady-states are investigated. Our results demonstrate that the unique homogenous steady-state is locally asymptotically stable for the associated ODE system and PDE system with self-diffusion. With the presence of the cross-diffusion, the homogeneous equilibrium is destabilized, and a heterogenous steady-state emerges as a consequence. In addition, the conditions guaranteeing the emergence of Turing patterns are derived.

2012 ◽  
Vol 2012 ◽  
pp. 1-18 ◽  
Author(s):  
Shengmao Fu ◽  
Lina Zhang

In this paper, we consider a cross-diffusion predator-prey model with sex structure. We prove that cross-diffusion can destabilize a uniform positive equilibrium which is stable for the ODE system and for the weakly coupled reaction-diffusion system. As a result, we find that stationary patterns arise solely from the effect of cross-diffusion.


2018 ◽  
Vol 28 (07) ◽  
pp. 1850089 ◽  
Author(s):  
Walid Abid ◽  
R. Yafia ◽  
M. A. Aziz-Alaoui ◽  
Ahmed Aghriche

This paper is concerned with some mathematical analysis and numerical aspects of a reaction–diffusion system with cross-diffusion. This system models a modified version of Leslie–Gower functional response as well as that of the Holling-type II. Our aim is to investigate theoretically and numerically the asymptotic behavior of the interior equilibrium of the model. The conditions of boundedness, existence of a positively invariant set are proved. Criteria for local stability/instability and global stability are obtained. By using the bifurcation theory, the conditions of Hopf and Turing bifurcation critical lines in a spatial domain are proved. Finally, we carry out some numerical simulations in order to support our theoretical results and to interpret how biological processes affect spatiotemporal pattern formation which show that it is useful to use the predator–prey model to detect the spatial dynamics in the real life.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Guohong Zhang ◽  
Xiaoli Wang

We study a Lotka-Volterra type predator-prey model with a transmissible disease in the predator population. We concentrate on the effect of diffusion and cross-diffusion on the emergence of stationary patterns. We first show that both self-diffusion and cross-diffusion can not cause Turing instability from the disease-free equilibria. Then we find that the endemic equilibrium remains linearly stable for the reaction diffusion system without cross-diffusion, while it becomes linearly unstable when cross-diffusion also plays a role in the reaction-diffusion system; hence, the instability is driven solely from the effect of cross-diffusion. Furthermore, we derive some results for the existence and nonexistence of nonconstant stationary solutions when the diffusion rate of a certain species is small or large.


2012 ◽  
Vol 05 (06) ◽  
pp. 1250060 ◽  
Author(s):  
GUANG-PING HU ◽  
XIAO-LING LI

In this paper, a strongly coupled diffusive predator–prey system with a modified Leslie–Gower term is considered. We will show that under certain hypotheses, even though the unique positive equilibrium is asymptotically stable for the dynamics with diffusion, Turing instability can produce due to the presence of the cross-diffusion. In particular, we establish the existence of non-constant positive steady states of this system. The results indicate that cross-diffusion can create stationary patterns.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Xiaoqin Wang ◽  
Yongli Cai

We present a theoretical analysis of processes of pattern formation that involves organisms distribution and their interaction of spatially distributed population with cross-diffusion in a Harrison-type predator-prey model. We analyze the global behaviour of the model by establishing a Lyapunov function. We carry out the analytical study in detail and find out the certain conditions for Turing’s instability induced by cross-diffusion. And the numerical results reveal that, on increasing the value of the half capturing saturation constant, the sequences “spots → spot-stripe mixtures → stripes → hole-stripe mixtures → holes” are observed. The results show that the model dynamics exhibits complex pattern replication controlled by the cross-diffusion.


2018 ◽  
Vol 28 (11) ◽  
pp. 2275-2312 ◽  
Author(s):  
Sainan Wu ◽  
Jinfeng Wang ◽  
Junping Shi

We propose a new reaction–diffusion predator–prey model system with predator-taxis in which the preys could move in the opposite direction of predator gradient. A similar situation also occurs when susceptible population avoids the infected ones in epidemic spreading. The global existence and boundedness of solutions of the system in bounded domains of arbitrary spatial dimension and any predator-taxis sensitivity coefficient are proved. It is also shown that such predator-taxis does not qualitatively affect the existence and stability of coexistence steady state solutions in many cases. For diffusive predator–prey system with diffusion-induced instability, it is shown that the presence of predator-taxis may annihilate the spatial patterns.


Sign in / Sign up

Export Citation Format

Share Document