scholarly journals The processing of alternating multi-layered functional polymer composites through high speed thin-wall injection molding

2019 ◽  
Author(s):  
Meirui Fu ◽  
Hua Deng ◽  
Rongni Du ◽  
Mingfeng Fan ◽  
Yi Zhou ◽  
...  
Polymer ◽  
2013 ◽  
Vol 54 (23) ◽  
pp. 6425-6436 ◽  
Author(s):  
Feilong Yu ◽  
Hua Deng ◽  
Qin Zhang ◽  
Ke Wang ◽  
Chaoliang Zhang ◽  
...  

2017 ◽  
Vol 121 (25) ◽  
pp. 6257-6270 ◽  
Author(s):  
Yi Zhou ◽  
Feilong Yu ◽  
Hua Deng ◽  
Yajiang Huang ◽  
Guangxian Li ◽  
...  

Micromachines ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 428
Author(s):  
Francesco Regi ◽  
Patrick Guerrier ◽  
Yang Zhang ◽  
Guido Tosello

A special mold provided with a glass window was used in order to directly evaluate the flow progression during the filling phase of the injection molding process in a thin-wall cavity and to validate the simulation of the process with particular focus on the hesitation effect. The flow of the polymer was recorded at 500 frames per second using a high-speed camera (HSC). Two unfilled thermoplastic polymers, acrylonitrile butadiene styrene (ABS), and polypropylene (PP), were used to fill two different 50 mm × 18 mm staircase geometry cavities, which were specifically designed to evaluate the hesitation effect with thicknesses of 1500, 1250, 1000, 750, 500 µm (cavity insert no. 1) and 1500, 1200, 900, 600, 300 µm (cavity insert no. 2). In addition to the video recordings, the simulations were validated using the timings and the data obtained by three pressure sensors and two thermocouples located in the cavity. For each injection cycle recorded on camera the machine data were collected to carefully implement the correct boundary conditions in the simulations. The analysis of the video recordings highlighted that flow progression and hesitation were mainly influenced not only by the thickness, but also by the velocity and the material type. The simulation results were in relatively good agreement with the experiments in terms of flow pattern and progression. Filling times were predicted with an average relative error deviation of 2.5% throughout all the section thicknesses of the cavity. Lower accuracies in terms of both filling times and injection pressure were observed at increasingly thinner sections.


2003 ◽  
Vol 22 (4) ◽  
pp. 306-319 ◽  
Author(s):  
Shia-Chung Chen ◽  
Wei-Liang Liaw ◽  
Pao-Lin Su ◽  
Ming-Hsiu Chung

2006 ◽  
Vol 306-308 ◽  
pp. 1331-1336
Author(s):  
H.K. Lee ◽  
J.C. Huang ◽  
G.E. Yang ◽  
Hong Gun Kim

A relationship of residual stress distribution and surface molding states on polymeric materials is presented in thin-walled injection molding. The residual stress is computed by computational numerical analysis, observed with stress viewer and birefringence. The residual stress on polymeric parts can allude the surface quality as well as flow paths. The residual stress distribution on polymeric parts is related with thickness, gate layout, and polymer types. Molecular orientation on polymeric parts is also important in thin wall injection molding. The residual stress and molecular orientation are related to the surface molding states intimately. Analysis of the residual stress is validated through photo-elastic method and surface molding states..


Sign in / Sign up

Export Citation Format

Share Document