Nitrogen-resistant cracking catalysts for non-hydrofined vacuum gasoil with a high content of nitrogen compounds and features of their regeneration

2019 ◽  
Author(s):  
T. V. Bobkova ◽  
O. V. Potapenko ◽  
K. I. Dmitriev ◽  
V. P. Doronin ◽  
T. P. Sorokina
2018 ◽  
Vol 172 ◽  
pp. 172-178 ◽  
Author(s):  
T.V. Bobkova ◽  
O.V. Potapenko ◽  
V.P. Doronin ◽  
T.P. Sorokina

1992 ◽  
Vol 31 (7) ◽  
pp. 1589-1597 ◽  
Author(s):  
Teh C. Ho ◽  
Alan R. Katritzky ◽  
Stephen J. Cato

Author(s):  
H. Kinney ◽  
M.L. Occelli ◽  
S.A.C. Gould

For this study we have used a contact mode atomic force microscope (AFM) to study to topography of fluidized cracking catalysts (FCC), before and after contamination with 5% vanadium. We selected the AFM because of its ability to well characterize the surface roughness of materials down to the atomic level. It is believed that the cracking in the FCCs occurs mainly on the catalysts top 10-15 μm suggesting that the surface corrugation could play a key role in the FCCs microactivity properties. To test this hypothesis, we chose vanadium as a contaminate because this metal is capable of irreversibly destroying the FCC crystallinity as well as it microporous structure. In addition, we wanted to examine the extent to which steaming affects the vanadium contaminated FCC. Using the AFM, we measured the surface roughness of FCCs, before and after contamination and after steaming.We obtained our FCC (GRZ-1) from Davison. The FCC is generated so that it contains and estimated 35% rare earth exchaged zeolite Y, 50% kaolin and 15% binder.


Author(s):  
A. K. Veligodska ◽  
O. V. Fedotov ◽  
A. S. Petreeva

<p>The influence of certain nitrogen compounds - components of glucose-peptone medium (GPM) on the accumulation of carotenoids by some strains was investigated by surface cultivating basidiomycetes. The total carotenoid content was set in acetone extracts of mycological material spectrophotometrically and calculated using the Vetshteyn formula.</p> <p>As the nitrogen-containing components used GPM with 9 compounds, such as peptone, DL-valine, L-asparagine, DL-serine, DL-tyrosine, L-proline, L-alanine, urea, NaNO<sub>3</sub>. The effect on the accumulation of specific compounds both in the mycelium and in the culture fluid of carotenoids by culturing certain strains of Basidiomycetes was identified.</p> <p>Adding to standard glucose-peptone medium peptone at 5 g/l causes an increase of carotenoid accumulation by strain <em>L. sulphureus</em> Ls-08, and in a concentration of 4 g/l by strains of <em>F. hepatica </em>Fh-18 and <em>F. fomentarius</em> Ff-1201.</p> <p>In order to increase the accumulation of carotenoids in the mycelium  we suggested to make a standard glucose-peptone medium with proline or valine for cultivating of <em>L. sulphureus</em> Ls- 08 strain; alanine for <em>F. fomentarius</em> Ff-1201 strain; proline, asparagine and serine - for strain Fh-18 of <em>F. hepatica</em>. The results can be implemented in further optimization of the composition of the nutrient medium for culturing strains of Basidiomycetes wich producing carotenoids.</p> <p><em>Keywords: nitrogen-containing substances, Basidiomycetes, mycelium</em><em>,</em><em> culture filtrate, carotenoids</em></p>


Sign in / Sign up

Export Citation Format

Share Document