scholarly journals On a class of Neumann type problems for polyharmonic equation

2019 ◽  
Author(s):  
V. V. Karachik ◽  
B. Kh. Turmetov
2007 ◽  
Vol 7 (1) ◽  
pp. 68-82
Author(s):  
K. Kropielnicka

AbstractA general class of implicit difference methods for nonlinear parabolic functional differential equations with initial boundary conditions of the Neumann type is constructed. Convergence results are proved by means of consistency and stability arguments. It is assumed that given functions satisfy nonlinear estimates of Perron type with respect to functional variables. Differential equations with deviated variables and differential integral problems can be obtained from a general model by specializing given operators. The results are illustrated by numerical examples.


2021 ◽  
Vol 11 (3) ◽  
Author(s):  
Heinrich Begehr ◽  
Bibinur Shupeyeva

AbstractThere are three basic boundary value problems for the inhomogeneous polyanalytic equation in planar domains, the well-posed iterated Schwarz problem, and further two over-determined iterated problems of Dirichlet and Neumann type. These problems are investigated in planar domains having a harmonic Green function. For the Schwarz problem, treated earlier [Ü. Aksoy, H. Begehr, A.O. Çelebi, AV Bitsadze’s observation on bianalytic functions and the Schwarz problem. Complex Var Elliptic Equ 64(8): 1257–1274 (2019)], just a modification is mentioned. While the Dirichlet problem is completely discussed for arbitrary order, the Neumann problem is just handled for order up to three. But a generalization to arbitrary order is likely.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Mohammed Alaoui ◽  
Abdelkarim Hajjaj ◽  
Lahcen Maniar ◽  
Jawad Salhi

AbstractIn this paper, we study an inverse source problem for a degenerate and singular parabolic system where the boundary conditions are of Neumann type. We consider a problem with degenerate diffusion coefficients and singular lower-order terms, both vanishing at an interior point of the space domain. In particular, we address the question of well-posedness of the problem, and then we prove a stability estimate of Lipschitz type in determining the source term by data of only one component. Our method is based on Carleman estimates, cut-off procedures and a reflection technique.


2020 ◽  
Vol 54 (4) ◽  
pp. 1373-1413 ◽  
Author(s):  
Huaiqian You ◽  
XinYang Lu ◽  
Nathaniel Task ◽  
Yue Yu

In this paper we consider 2D nonlocal diffusion models with a finite nonlocal horizon parameter δ characterizing the range of nonlocal interactions, and consider the treatment of Neumann-like boundary conditions that have proven challenging for discretizations of nonlocal models. We propose a new generalization of classical local Neumann conditions by converting the local flux to a correction term in the nonlocal model, which provides an estimate for the nonlocal interactions of each point with points outside the domain. While existing 2D nonlocal flux boundary conditions have been shown to exhibit at most first order convergence to the local counter part as δ → 0, the proposed Neumann-type boundary formulation recovers the local case as O(δ2) in the L∞ (Ω) norm, which is optimal considering the O(δ2) convergence of the nonlocal equation to its local limit away from the boundary. We analyze the application of this new boundary treatment to the nonlocal diffusion problem, and present conditions under which the solution of the nonlocal boundary value problem converges to the solution of the corresponding local Neumann problem as the horizon is reduced. To demonstrate the applicability of this nonlocal flux boundary condition to more complicated scenarios, we extend the approach to less regular domains, numerically verifying that we preserve second-order convergence for non-convex domains with corners. Based on the new formulation for nonlocal boundary condition, we develop an asymptotically compatible meshfree discretization, obtaining a solution to the nonlocal diffusion equation with mixed boundary conditions that converges with O(δ2) convergence.


Sign in / Sign up

Export Citation Format

Share Document