scholarly journals Polyanalytic boundary value problems for planar domains with harmonic Green function

2021 ◽  
Vol 11 (3) ◽  
Author(s):  
Heinrich Begehr ◽  
Bibinur Shupeyeva

AbstractThere are three basic boundary value problems for the inhomogeneous polyanalytic equation in planar domains, the well-posed iterated Schwarz problem, and further two over-determined iterated problems of Dirichlet and Neumann type. These problems are investigated in planar domains having a harmonic Green function. For the Schwarz problem, treated earlier [Ü. Aksoy, H. Begehr, A.O. Çelebi, AV Bitsadze’s observation on bianalytic functions and the Schwarz problem. Complex Var Elliptic Equ 64(8): 1257–1274 (2019)], just a modification is mentioned. While the Dirichlet problem is completely discussed for arbitrary order, the Neumann problem is just handled for order up to three. But a generalization to arbitrary order is likely.

Analysis ◽  
2005 ◽  
Vol 25 (1) ◽  
Author(s):  
Heinrich Begehr ◽  
Ajay Kumar

AbstractThe three basic boundary value problems in complex analysis are of Schwarz, of Dirichlet and of Neumann type. When higher order equations are investigated all kind of combinations of these boundary conditions are proper to determine solutions. However, not all of these conditions are leading to well-posed problems. Some are overdetermined so that solvability conditions have to be found. Some of these boundary value problems are treated here for the inhomogeneous polyanalytic equation.


2016 ◽  
Vol 56 (3) ◽  
pp. 245
Author(s):  
Marzena Szajewska ◽  
Agnieszka Tereszkiewicz

Boundary value problems are considered on a simplex <em>F</em> in the real Euclidean space R<sup>2</sup>. The recent discovery of new families of special functions, orthogonal on <em>F</em>, makes it possible to consider not only the Dirichlet or Neumann boundary value problems on <em>F</em>, but also the mixed boundary value problem which is a mixture of Dirichlet and Neumann type, ie. on some parts of the boundary of <em>F</em> a Dirichlet condition is fulfilled and on the other Neumann’s works.


Author(s):  
Hong Wang ◽  
Danping Yang

AbstractFractional differential equation (FDE) provides an accurate description of transport processes that exhibit anomalous diffusion but introduces new mathematical difficulties that have not been encountered in the context of integer-order differential equation. For example, the wellposedness of the Dirichlet boundary-value problem of one-dimensional variable-coefficient FDE is not fully resolved yet. In addition, Neumann boundary-value problem of FDE poses significant challenges, partly due to the fact that different forms of FDE and different types of Neumann boundary condition have been proposed in the literature depending on different applications.We conduct preliminary mathematical analysis of the wellposedness of different Neumann boundary-value problems of the FDEs. We prove that five out of the nine combinations of three different forms of FDEs that are closed by three types of Neumann boundary conditions are well posed and the remaining four do not admit a solution. In particular, for each form of the FDE there is at least one type of Neumann boundary condition such that the corresponding boundary-value problem is well posed, but there is also at least one type of Neumann boundary condition such that the corresponding boundary-value problem is ill posed. This fully demonstrates the subtlety of the study of FDE, and, in particular, the crucial mathematical modeling question: which combination of FDE and fractional Neumann boundary condition, rather than which form of FDE or fractional Neumann boundary condition, should be used and studied in applications.


2016 ◽  
Vol 23 (4) ◽  
pp. 511-518
Author(s):  
Otar Chkadua ◽  
Roland Duduchava ◽  
David Kapanadze

AbstractWe investigate screen type mixed boundary value problems for anisotropic pseudo-Maxwell’s equations. We show that the problems with tangent traces are well posed in tangent Sobolev spaces. The unique solvability results are proven based on the potential method and coercivity result of Costabel on the bilinear form associated with pseudo-Maxwell’s equations.


Sign in / Sign up

Export Citation Format

Share Document