Flexible four-point conjugate thin film thermocouples with high reliability and sensitivity

2020 ◽  
Vol 91 (4) ◽  
pp. 045004
Author(s):  
Bian Tian ◽  
Zhaojun Liu ◽  
Cunfeng Wang ◽  
Yan Liu ◽  
Zhongkai Zhang ◽  
...  
2012 ◽  
Vol 520 (17) ◽  
pp. 5801-5806 ◽  
Author(s):  
John D. Wrbanek ◽  
Gustave C. Fralick ◽  
Dongming Zhu

2006 ◽  
Vol 100 (11) ◽  
pp. 114905 ◽  
Author(s):  
M. Cattani ◽  
M. C. Salvadori ◽  
A. R. Vaz ◽  
F. S. Teixeira ◽  
I. G. Brown

10.2514/3.836 ◽  
1996 ◽  
Vol 10 (4) ◽  
pp. 607-612 ◽  
Author(s):  
J. Lepicovsky ◽  
R. J. Bruckner ◽  
F. A. Smith

2018 ◽  
Vol 30 (2) ◽  
pp. 1786-1793 ◽  
Author(s):  
Yantao Liu ◽  
Wei Ren ◽  
Peng Shi ◽  
Dan Liu ◽  
Yijun Zhang ◽  
...  

2016 ◽  
Vol 2016 (CICMT) ◽  
pp. 000175-000182
Author(s):  
Carol Putman ◽  
Rachel Cramm Horn ◽  
Ambrose Wolf ◽  
Daniel Krueger

Abstract Low temperature cofired ceramic (LTCC) has been established as an excellent packaging technology for high reliability, high density microelectronics. The functionality and robustness of rework has been increased through the incorporation of a Physical Vapor Deposition (PVD) thin film Ti/Cu/Pt/Au metallization. PVD metallization is suitable for RF (Radio Frequency) applications as well as digital systems. Adhesion of the Ti “adhesion layer” to the LTCC as-fired surface is not well understood. While past work has established extrinsic parameters for delamination mechanisms of thin films on LTCC substrates, there is incomplete information regarding the intrinsic (i.e. thermodynamic) parameters in literature. This paper analyzes the thermodynamic favorability of adhesion between Ti, Cr, and their oxides coatings on LTCC (assumed as amorphous silica glass and Al2O3). Computational molecular calculations are used to determine interface energy as an indication of molecular stability over a range of temperatures. The end result will expand the understanding of thin film adhesion to LTCC surfaces and assist in increasing the long-term reliability of the interface bonding on RF microelectronic layers.


2016 ◽  
Vol 13 (3) ◽  
pp. 95-101 ◽  
Author(s):  
Carol Putman ◽  
Rachel Cramm Horn ◽  
J. Ambrose Wolf ◽  
Daniel Krueger

Low temperature cofired ceramic (LTCC) has been established as an excellent packaging technology for high-reliability, high-density microelectronics. The functionality and robustness of rework have been increased through the incorporation of a physical vapor deposition (PVD) thin film Ti/Cu/Pt/Au metallization. PVD metallization is suitable for radio frequency (RF) applications as well as digital systems. Adhesion of the Ti “adhesion layer” to the LTCC as-fired surface is not well understood. Although previous work has established extrinsic parameters for delamination mechanisms of thin films on LTCC substrates, there is incomplete information regarding the intrinsic (i.e., thermodynamic) parameters in the literature. This article analyzes the thermodynamic favorability of adhesion between Ti, Cr, and their oxide coatings on LTCC (assumed as amorphous silica glass and Al2O3). Computational molecular calculations are used to determine interface energy as an indication of molecular stability between pair of materials at specific temperature. The end result will expand the understanding of thin film adhesion to LTCC surfaces and assist in increasing the long-term reliability of the interface bonding on RF microelectronic layers.


Sign in / Sign up

Export Citation Format

Share Document