inorganic thin films
Recently Published Documents


TOTAL DOCUMENTS

87
(FIVE YEARS 19)

H-INDEX

18
(FIVE YEARS 4)

2021 ◽  
Vol 2114 (1) ◽  
pp. 012092
Author(s):  
A A Qassim ◽  
A N Sadeq

Abstract The synthesis of organic and inorganic thin films based on nickel phthalocyanine (NiPc) and nickel oxide NiO nanoparticles. the thin films prepared by spin coating technic. The volume of the solution dropped on each slide is 50 micro liter at room temperature. Nanocomposites thin films NiPc:NiO with different percentage 1:0 75:25, 50:50, 25:75 and 0:1 are analysed using FESEM and EDX. The study of morphology and chemical composition of the synthesized thin films revealed the formation of NiPc in the form of rods and nickel oxide similar to spherical clusters. The EDX spectra revealed the appearance of oxygen in a high percentage in some samples, perhaps as a result of the chemical and physical adsorption. This is the first study on the combination and description of NiPc:NiO nanocomposite.


2021 ◽  
Author(s):  
Arbresha Muriqi ◽  
Maarit Karppinen ◽  
Michael Nolan

Hybrid materials composed of organic and inorganic components offer the opportunity to develop interesting materials with well-controlled properties. Molecular Layer Deposition (MLD) is a suitable thin film deposition technique for the controlled growth of thin, conformal hybrid films. Despite the great interest in these materials, a detailed understanding of the atomistic mechanism of MLD film growth is still lacking. This paper presents a first principles investigation of the detailed mechanism of the growth of hybrid organic-inorganic thin films of aluminium oxide and aromatic molecules with different terminal groups deposited by MLD. We investigate the chemistry of the MLD process between the post-TMA pulse methyl-terminated Al2O3 surface and the homo- or hetero- bifunctional aromatic compounds with hydroxy (OH) and/or amino (NH2) terminal groups: hydroquinone (HQ), p-phenylenediamine (PD) and 4-aminophenol (AP). Double reactions of aromatic molecules with the alumina surface are also explored. We show that all aromatic precursor molecules bind favourably to the methyl terminated Al2O3, via formation of Al-O and Al-N bonds and CH4 elimination. While reaction energetics suggest a higher reactivity of the OH group with TMA in comparison to the NH2 group, which could enable the double reaction phenomenon for HQ we propose that the upright configuration will be present so that the organic molecules are self-assembled in an upright configuration, which leads to thicker hybrid films. Interactions between the methyl-terminated Al2O3 with substituted phenyls are investigated to examine the influence of phenyl functionalisation on the chemistry of the terminal groups. Reaction energetics show that phenyl functionalization actually promotes an upright configuration of the molecule, which leads to thicker and more flexible films, as well as tuning the properties of the aromatic components of the hybrid films. We also investigate the interactions between methyl-terminated Al2O3 with new possible MLD organic precursors, hydroquinone bis(2-hydroxyethyl)ether and 1,1'-biphenyl-4,4'-diamine. DFT shows that both aromatic molecules react favourably with TMA and are worthy of further experimental investigation.


2021 ◽  
Vol 9 ◽  
Author(s):  
Jian Liu ◽  
Jiajun Wang

The design of multifunctional thin films holds the key to manipulate the surface and interface structure of the electrode and electrolyte in rechargeable batteries and achieve desirable performance for various applications. Molecular layer deposition (MLD) is an emerging thin-film technique with exclusive advantages of depositing hybrid organic-inorganic materials at a nanoscale level and with well tunable and unique properties that conventional thin films might not have. Herein, we provide a timely mini-review on the most recent progress in the surface chemistry and MLD process of novel hybrid organic-inorganic thin films and their applications as the anode, cathode, and solid electrolytes in lithium-ion batteries. Perspectives for future research in designing new MLD process and precursors, enriching MLD material library, and expanding their potential applications in other energy storage systems, are discussed at the end.


2021 ◽  
Vol 2 (7) ◽  
pp. 2328-2333
Author(s):  
Elin Sundin ◽  
Fredrik Johansson ◽  
Valeria Saavedra Becerril ◽  
Joachim Wallenstein ◽  
August Gasslander ◽  
...  

Herein we present two-colour photoswitching in a photoresponsive thin film based on a Ru-sulfoxide complex immobilized onto a ZrO2 surface.


2020 ◽  
Author(s):  
Alberto Alvarez Fernandez ◽  
Barry Reid ◽  
Jugal Suthar ◽  
Swan Choy ◽  
Maximiliano Jesus Jara Fornerod ◽  
...  

Mesoporous inorganic thin films are promising materials architectures for a variety of applications, including sensing, catalysis, protective coatings, energy generation and storage. In many cases, precise control over a bicontinuous porous network on the 10-nm length scale is crucial for their operation. A particularly promising route for structure formation utilizes block copolymer (BCP) micelles in solution as sacrificial structure-directing agents for the co-assembly of inorganic precursors. This method offers pore size control via the molecular weight of the pore forming block and is compatible with broad materials library. On the other hand, the molecular weight dependence impedes continuous pore tuning and the intrinsic polymer dispersity presents challenges to the pore size homogeneity. To this end, we demonstrate how chromatographic fractionation of BCPs provides a powerful method to control the pore size and dispersity of the resulting mesoporous thin films. We apply a semi-preparative size exclusion chromatographic fractionation to a polydisperse poly(isobutylene)-block-poly(ethylene oxide) (PIB-b-PEO) BCP obtained from scaled-up synthesis. The isolation of BCP fractions with distinct molecular weight and narrowed dispersity allowed us to not only tune the characteristic pore size from 9.1±1.5 to 14.1±2.1 nm with the identical BCP source material, but also significantly reduce the pore size dispersity compared to the non-fractionated BCP. Our findings offer a route to obtain a library of monodisperse BCPs from a polydisperse feedstock and provide important insights on the direct relationship between macromolecular characteristics and the resulting structure-directed mesopores, in particular related to dispersity.


2020 ◽  
Author(s):  
Alberto Alvarez Fernandez ◽  
Barry Reid ◽  
Jugal Suthar ◽  
Swan Choy ◽  
Maximiliano Jesus Jara Fornerod ◽  
...  

Mesoporous inorganic thin films are promising materials architectures for a variety of applications, including sensing, catalysis, protective coatings, energy generation and storage. In many cases, precise control over a bicontinuous porous network on the 10-nm length scale is crucial for their operation. A particularly promising route for structure formation utilizes block copolymer (BCP) micelles in solution as sacrificial structure-directing agents for the co-assembly of inorganic precursors. This method offers pore size control via the molecular weight of the pore forming block and is compatible with broad materials library. On the other hand, the molecular weight dependence impedes continuous pore tuning and the intrinsic polymer dispersity presents challenges to the pore size homogeneity. To this end, we demonstrate how chromatographic fractionation of BCPs provides a powerful method to control the pore size and dispersity of the resulting mesoporous thin films. We apply a semi-preparative size exclusion chromatographic fractionation to a polydisperse poly(isobutylene)-block-poly(ethylene oxide) (PIB-b-PEO) BCP obtained from scaled-up synthesis. The isolation of BCP fractions with distinct molecular weight and narrowed dispersity allowed us to not only tune the characteristic pore size from 9.1±1.5 to 14.1±2.1 nm with the identical BCP source material, but also significantly reduce the pore size dispersity compared to the non-fractionated BCP. Our findings offer a route to obtain a library of monodisperse BCPs from a polydisperse feedstock and provide important insights on the direct relationship between macromolecular characteristics and the resulting structure-directed mesopores, in particular related to dispersity.


2020 ◽  
Vol 503 ◽  
pp. 144317 ◽  
Author(s):  
M. Socol ◽  
N. Preda ◽  
A. Costas ◽  
C. Breazu ◽  
A. Stanculescu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document