New class of exact solutions of the Dirac equation

1975 ◽  
Vol 16 (10) ◽  
pp. 2089-2092 ◽  
Author(s):  
Franklin S. Felber ◽  
John H. Marburger
Pramana ◽  
1979 ◽  
Vol 12 (5) ◽  
pp. 475-480 ◽  
Author(s):  
S V Kulkarni ◽  
L K Sharma

2009 ◽  
Vol 20 (02) ◽  
pp. 313-322
Author(s):  
PILWON KIM

Numerical schemes that are implemented by interpolation of exact solutions to a differential equation naturally preserve geometric properties of the differential equation. The solution interpolation method can be used for development of a new class of geometric integrators, which generally show better performances than standard method both quantitatively and qualitatively. Several examples including a linear convection equation and a nonlinear heat equation are included.


2019 ◽  
Vol 401 ◽  
pp. 21-39 ◽  
Author(s):  
M.D. de Oliveira ◽  
Alexandre G.M. Schmidt

2001 ◽  
Vol 8 (12) ◽  
pp. 5081-5085 ◽  
Author(s):  
M. Y. Yu ◽  
Zhaoyang Chen ◽  
L. Stenflo

Symmetry ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1867
Author(s):  
Alexander Breev ◽  
Alexander Shapovalov

We develop a non-commutative integration method for the Dirac equation in homogeneous spaces. The Dirac equation with an invariant metric is shown to be equivalent to a system of equations on a Lie group of transformations of a homogeneous space. This allows us to effectively apply the non-commutative integration method of linear partial differential equations on Lie groups. This method differs from the well-known method of separation of variables and to some extent can often supplement it. The general structure of the method developed is illustrated with an example of a homogeneous space which does not admit separation of variables in the Dirac equation. However, the basis of exact solutions to the Dirac equation is constructed explicitly by the non-commutative integration method. In addition, we construct a complete set of new exact solutions to the Dirac equation in the three-dimensional de Sitter space-time AdS3 using the method developed. The solutions obtained are found in terms of elementary functions, which is characteristic of the non-commutative integration method.


Sign in / Sign up

Export Citation Format

Share Document