Shear‐free perfect fluids in general relativity. I. Petrov type N Weyl tensor

1987 ◽  
Vol 28 (8) ◽  
pp. 1848-1853 ◽  
Author(s):  
J. Carminati
1989 ◽  
Vol 6 (7) ◽  
pp. 949-960 ◽  
Author(s):  
A Barnes ◽  
R R Rowlingson
Keyword(s):  

Author(s):  
Roman Baudrimont

This paper is to summarize the involvement of the stress energy tensor in the study of fluid mechanics. In the first part we will see the implication that carries the stress energy tensor in the framework of general relativity. In the second part, we will study the stress energy tensor under the mechanics of perfect fluids, allowing us to lead third party in the case of Newtonian fluids, and in the last part we will see that it is possible to define space-time as a no-Newtonian fluids.


2021 ◽  
Author(s):  
◽  
Jessica Santiago Silva

<p>In this thesis, the connections between thermodynamics and general relativity are explored. We introduce some of the history of the interaction between these two theories and take some time to individually study important concepts of both of them. Then, we move on to explore the concept of gravitationally induced temperature gradients in equilibrium states, first introduced by Richard Tolman. We explore these Tolman-like temperature gradients, understanding their physical origin and whether they can be generated by other forces or not. We then generalize this concept for fluids following generic four-velocities, which are not necessarily generated by Killing vectors, in general stationary space-times. Some examples are given.  Driven by the interest of understanding and possibly extending the concept of equilibrium for fluids following trajectories which are not generated by Killing vectors, we dedicate ourselves to a more fundamental question: can we still define thermal equilibrium for non-Killing flows? To answer this question we review two of the main theories of relativistic non-perfect fluids: Classical Irreversible Thermodynamics and Extended Irreversible Thermodynamics. We also take a tour through the interesting concept of Born-rigid motion, showing some explicit examples of non-Killing rigid flows for Bianchi Type I space-times. These results are important since they show that the Herglotz–Noether theorem cannot be extended for general curved space-times. We then connect the Born-rigid concept with the results obtained by the relativistic fluid’s equilibrium conditions and show that the exact thermodynamic equilibrium can only be achieved along a Killing flow. We do, however, introduce some interesting possibilities which are allowed for non-Killing flows.  We then launch into black hole thermodynamics, specifically studying the trans-Planckian problem for Hawking radiation. We construct a kinematical model consisting of matching two Vaidya spacetimes along a thin shell and show that, as long as the Hawking radiation is emitted only a few Planck lengths (in proper distance) away from the horizon, the trans-Plackian problem can be avoided.  We conclude with a brief discussion about what was presented and what can be done in the future.</p>


2018 ◽  
Vol 27 (06) ◽  
pp. 1841012 ◽  
Author(s):  
Victor Berezin ◽  
Vyacheslav Dokuchaev ◽  
Yury Eroshenko

The spherically symmetric thin shells are the nearest generalizations of the point-like particles. Moreover, they serve as the simple sources of the gravitational fields both in General Relativity and much more complex quadratic gravity theories. We are interested in the special and physically important case when all the quadratic in curvature tensor (Riemann tensor) and its contractions (Ricci tensor and scalar curvature) terms are present in the form of the square of Weyl tensor. By definition, the energy–momentum tensor of the thin shell is proportional to Diracs delta-function. We constructed the theory of the spherically symmetric thin shells for three types of gravitational theories with the shell: (1) General Relativity; (2) Pure conformal (Weyl) gravity where the gravitational part of the total Lagrangian is just the square of the Weyl tensor; (3) Weyl–Einstein gravity. The results are compared with these in General Relativity (Israel equations). We considered in detail the shells immersed in the vacuum. Some peculiar properties of such shells are found. In particular, for the traceless ([Formula: see text] massless) shell, it is shown that their dynamics cannot be derived from the matching conditions and, thus, is completely arbitrary. On the contrary, in the case of the Weyl–Einstein gravity, the trajectory of the same type of shell is completely restored even without knowledge of the outside solution.


2015 ◽  
Vol 12 (10) ◽  
pp. 1550103 ◽  
Author(s):  
Rajesh Kumar ◽  
S. K. Srivastava ◽  
V. C. Srivastava

In General Relativity (GR), the analysis of electric and magnetic Weyl tensors has been studied by various authors. The present study deals with cylindrically symmetric relativistic fluids in GR characterized by the vanishing of magnetic Weyl tensor-purely electric (PE) fields. A very new assumption has been adapted to solve the Einstein's equations and the obtained solution is shearing at all. We signified the importance of PE fields in the context of expansion scalar, energy density, shear and acceleration.


Sign in / Sign up

Export Citation Format

Share Document