Recent double beta decay experimental results

Author(s):  
C. Sean Sutton
2003 ◽  
Vol 18 (22) ◽  
pp. 4097-4111 ◽  
Author(s):  
STEVEN R. ELLIOTT

The recent neutrino oscillation experimental results indicate that at least one neutrino has a mass greater than 50 meV. The next generation of double-beta decay experiments will very likely have a sensitivity to an effective Majorana neutrino mass below this target. Therefore this is a very exciting time for this field of research as even null results from these experiments have the potential to elucidate the nature of the neutrino.


2020 ◽  
Vol 80 (8) ◽  
Author(s):  
O. Azzolini ◽  
J. W. Beeman ◽  
F. Bellini ◽  
M. Beretta ◽  
M. Biassoni ◽  
...  

Abstract CUPID-0 is the first pilot experiment of CUPID, a next-generation project searching for neutrinoless double beta decay. In its first scientific run, CUPID-0 operated 26 ZnSe cryogenic calorimeters coupled to light detectors in the underground Laboratori Nazionali del Gran Sasso. In this work, we analyzed a ZnSe exposure of 11.34 kg year to search for the neutrinoless double beta decay of $$^{70}$$70Zn and for the neutrinoless positron-emitting electron capture of $$^{64}$$64Zn. We found no evidence for these decays and set 90$$\%$$% credible interval limits of $$\hbox {T}_{1/2}^{0\nu \beta \beta }$$T1/20νββ($$^{70}$$70Zn) > 1.6 $$10^{21}$$1021 year and $$\hbox {T}_{1/2}^{0\nu EC \beta +}$$T1/20νECβ+($$^{64}$$64Zn) > 1.2$$\times 10^{22}$$×1022 year, surpassing by more than one order of magnitude the previous experimental results (Belli et al. in J Phys G 38(11):115107, https://doi.org/10.1088/0954-3899/38/11/115107, 2011).


2000 ◽  
Vol 486 (1-2) ◽  
pp. 13-21 ◽  
Author(s):  
A. Alessandrello ◽  
C. Brofferio ◽  
O. Cremonesi ◽  
E. Fiorini ◽  
A. Giuliani ◽  
...  

2021 ◽  
Vol 103 (1) ◽  
Author(s):  
Takehiko Asaka ◽  
Hiroyuki Ishida ◽  
Kazuki Tanaka

Universe ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 66
Author(s):  
Jenni Kotila

Single-particle level energies form a significant input in nuclear physics calculations where single-particle degrees of freedom are taken into account, including microscopic interacting boson model investigations. The single-particle energies may be treated as input parameters that are fitted to reach an optimal fit to the data. Alternatively, they can be calculated using a mean field potential, or they can be extracted from available experimental data, as is done in the current study. The role of single-particle level energies in the microscopic interacting boson model calculations is discussed with special emphasis on recent double beta decay calculations.


2021 ◽  
Vol 103 (5) ◽  
Author(s):  
Lukas Graf ◽  
Sudip Jana ◽  
Manfred Lindner ◽  
Werner Rodejohann ◽  
Xun-Jie Xu

Sign in / Sign up

Export Citation Format

Share Document